Глава шестая
«Вселесная паутина»
Постепенно наблюдатель осознает, что все эти организмы связаны друг с другом не линейно, а в сетеподобное, сложно переплетенное полотно.
– АЛЕКСАНДР ФОН ГУМБОЛЬДТ
На северо-западном побережье Тихого океана леса преимущественно зеленые. Поэтому меня поразили кустики ослепительно-белых растений, пробившихся сквозь опавшую хвою. У этих растений-призраков нет листьев. Они похожи на глиняные курительные трубки, поставленные вертикально на кончики мундштуков. Там, где должны были бы расти листья, стебли украшают чешуйки. Они вырастают в сильно затененных уголках, пробиваясь из лесной подстилки, где не сможет выжить ни одно другое растение, и собираются тесными группами, как обычно делают некоторые грибы. Ведь и вправду, если бы их не венчал цветок, можно было бы принять их за грибы. Их зовут вертляницами одноцветковыми, Monotropa uniflora, и это растения, делающие вид, что ими не являются.
Вертляницы давным-давно отказались от дара фотосинтеза, а с ним и от листьев и зеленого цвета. Но как? Фотосинтез – одна из древнейших особенностей растений. В большинстве случаев это обязательная характеристика представителей растительного мира. И все же вертляница оставила ее. Представьте себе, что вы обнаружили вид обезьян, которые не едят бананы, а вместо этого собирают в шерсти фотосинтезирующие бактерии и за их счет получают энергию от солнечного света. Кардинальное отклонение от нормы.
Разгадка здесь – грибная. Вертляницы – как и большинство зеленых растений, – чтобы выжить, полагаются на своих микоризных партнеров. Но их поведение в симбиозе отличается от поведения других растений. «Нормальные» зеленые растения поставляют своим грибным партнерам богатые энергией углеродные соединения, липиды или углеводы, в обмен на минеральные вещества из почвы. Вертляницы нашли способ уклониться от обмена. Вместо этого они получают и углерод, и минеральные вещества от микоризных грибов и, кажется, ничего не дают взамен.
Тогда откуда берется углерод, который получают вертляницы? К микоризным грибам углерод поступает от зеленых растений. Это значит, что углерод, дающий энергию для жизни вертляниц и составляющий большую часть материи, из которой они состоят, должен в конечном итоге попадать к ним от других растений через общую микоризную сеть. Если бы углерод не проходил по общим грибным связям от зеленого растения к вертлянице, она не смогла бы выжить.
Вертляницы уже давно озадачивают биологов. В конце XIX столетия русский ботаник, пытавшийся понять, как эти странные растения вообще могут существовать, первым предположил, что вещества способны переходить от растения к растению по грибным связующим каналам. Идея не прижилась. Это была мимолетная догадка, затерявшаяся в малоизвестной статье, и она исчезла, не оставив и следа. Тайна вертляниц оставалась таковой еще 75 лет, пока до нее не добрался шведский ботаник Эрик Бьёркман, который ввел в деревья радиоактивные изотопы углерода и смог продемонстрировать, что радиация накапливалась в расположенных поблизости вертляницах. Это было первое доказательство того, что вещества могут перемещаться между растениями по грибным путям.
Вертляницы заманили ботаников в неисследованную область биологии. С 1980-х годов стало понятно, что вертляницы вовсе не являются аномалиями. Большинство растений свободны в своих связях и могут иметь много партнеров-грибов. Микоризные грибы также достаточно вольно относятся к своим отношениям с растениями. Отдельные грибные сети могут объединяться друг с другом. Каков же результат? Огромные, сложные, взаимосвязанные системы микоризных сетей.
Вертляница одноцветковая (Monotropa uniflora)
«Тот факт, что это все соединено между собой под землей, куда бы мы ни шли, просто взрывает мозг, – восторгалась Тоби Кирс. – Она [сеть] огромна. Я поверить не могу, что ею занимаются не все». Я разделял ее чувства. Многие организмы взаимодействуют друг с другом. Если схематично изобразить, кто с кем связан, получится громадная система. Однако грибные сети образуют физические, реальные связи между растениями. Это примерно как знакомство с 20 людьми против знакомства с 20 людьми, связанными единой системой кровообращения. Эти микоризные сети – в профессиональной литературе называемые common mycorhyzal networks («общие микоризные сети») – воплощают главный экологический принцип взаимодействия организмов. «Сетеподобное, сложно переплетенное полотно» было метафорой, которую Гумбольдт использовал для описания «всего живого» в природе – комплекс взаимоотношений, которыми организмы неразрывно связаны. Микоризные связи превращают и сети, и полотно в реальность.
Одним из тех, кто подхватил вслед за Бьёркманом расследование в отношении вертляниц и увлекся им, был Дэвид Рид – выдающийся британский ученый-миколог и соавтор авторитетного учебника по этому предмету. За работу над микоризными связями Рид был посвящен в рыцари и стал членом Лондонского королевского общества. Известный среди коллег в США как сэр Чувак (Sir Dude), Рид славится своим обаянием и остроумием; коллеги же называют его «настоящим». В 1984 году Риду и его соратникам первым удалось убедительно доказать, что углерод может поступать от растения к растению по грибным каналам связи. С 1960-х годов, когда началось изучение вертляниц, ученые выдвигали гипотезы о том, что подобный обмен может существовать. Но никому не удалось продемонстрировать, что углеводы не просачиваются в почву из корней одного растения и не впитываются из нее корнями другого. Иными словами, никто не сумел доказать, что углерод переходит непосредственно от растения к растению по грибному каналу.
Рид придумал метод, позволивший воочию убедиться в реальности переноса углерода от растения к растению. Он вырастил растения-доноры и растения-реципиенты рядом друг с другом, одни с микоризными грибами, другие без них. Через шесть недель он ввел растениям-донорам радиоактивный, меченый, углекислый газ. Затем он собрал растения и сделал рентгеновские снимки их корневых систем. Там, где не было микоризных грибов, радиация была видна только в корнях растений-доноров. Там, где грибным сетям дали возможность сформироваться, радиацию можно было увидеть в корнях доноров, в грибных гифах и в корнях растений-реципиентов. Результаты Рида произвели сенсацию. Он доказал, что трансфер углерода между растениями не был характерен только для вертляницы одноцветковой. Однако оставались и более серьезные вопросы. Рид провел эксперимент in vitro, и ничто не указывало на то, что обмен углеродом между растениями может происходить за стенами лаборатории, в естественных условиях.
Тринадцатью годами позже, в 1997 году, канадская докторантка Сьюзан Симард опубликовала первое исследование, в котором высказывалось предположение, что растения могли передавать друг другу углерод в естественных условиях. Она подвергла воздействию радиоактивных молекул углекислого газа пáры молодых деревьев в лесу. Через два года она обнаружила, что углерод передавался от берез к елям, делившим одну микоризную сеть, но не между березами и кедрами, которые не имели микоризных связей. Количество углерода, полученного елями, – в среднем 6 % меченого углерода, полученного березой, – Симард посчитала значимым: можно было ожидать, что со временем это количество углерода изменит жизнь деревьев. Более того, оказавшись в тени – это уменьшало объем фотосинтеза и сводило на нет запасы углерода, – ростки ели начинали получать больше углерода от доноров-берез, чем тогда, когда находились на солнце. Углерод, будто под горку, перетекал между растениями – от изобилия к дефициту.
Открытия Симард поразили многих. Ее работу принял журнал Nature, и редактор обратился к Риду с просьбой написать отзыв. В своей статье «Связующие узы» (The Ties That Bind) Рид высказывал мысль о том, что изыскания Симард «мотивируют нас исследовать лесные экосистемы с совершенно новой позиции». На обложке журнала была напечатана крупным шрифтом фраза, которую Рид придумал во время беседы с редактором журнала: «Вселесная паутина» (Wood Wide Web).
До появления исследований Рида, Симард и других авторов в 1980–1990-х годах растения воспринимали как более или менее самостоятельные величины. Давно было известно, что корни одного дерева иногда сливаются с корнями другого, то есть имеет место своего рода прививка. Однако это считалось явлением маргинальным, и большинство растительных сообществ представлялись состоящими из самостоятельных растений, соперничающих друг с другом за источники питания. Открытия Симард и Рида заставляли задуматься о том, что считать растения такими уж самостоятельным не стоит. Как писал Рид в своей заметке в журнале Nature, вероятность того, что ресурсы передаются между растениями, наводит на мысль, что «нам следует скорее ориентироваться на распределение ресурсов внутри растительного сообщества, а не сосредоточиваться на конкуренции между отдельными растениями».
Симард опубликовала свои результаты в очень важный для развития современной «сетевой» науки момент. Сеть кабелей и роутеров, образующая глобальную паутину, расширяется с 1970-х годов. Интернет как система веб-страниц и переходов между ними стал возможным благодаря особому оборудованию в 1989 году; он стал общедоступен двумя годами позже. Когда Национальный научный фонд США отказался от управления интернетом в 1995 году, тот начал разрастаться бесконтрольно и оказался лишен центра. Как объяснил мне Альберт-Ласло Барабаши, спецалист по «сетевым» наукам, «именно в 1990-х годах сети стали проникать в общественное сознание».
В 1998 году Барабаши с коллегами предпринял попытку нанести на карту всемирную паутину. До этого момента у ученых не было методов анализа структуры и свойств сложных сетей, хотя они и преобладают в жизни людей. В рамках раздела математики, ответственного за моделирование сетей, – теории графов – нельзя описать поведение большинства сетей в реальном мире, и многие вопросы так и повисли в воздухе. Почему эпидемии и компьютерные вирусы распространяются так быстро? Почему некоторые сети продолжают функционировать, несмотря на массовые нарушения? Благодаря исследованию всемирной паутины, проведенному Барабаши, появились новые математические методы и инструменты. Оказалось, что широкий диапазон сетей, от половых отношений человека до биохимических взаимодействий внутри организмов, управляется несколькими ключевыми принципами. Всемирная паутина, как заметил Барабаши, «имеет больше сходства с экосистемой или системой клеток, нежели со швейцарскими часами». Сегодня невозможно скрыться от сетевой науки. Выберите любую научную область – от неврологии, биохимии, экономики, теории эпидемий, алгоритмов поисковых систем или машинного обучения, на которых основан ИИ, до астрономии и науки о Вселенной, космической сети, испещренной линиями газов и звездными скоплениями. Вполне возможно, и она использует сетевую модель, чтобы разобраться в предмете.
Как объяснил мне Рид, вдохновленный статьей Симард и побуждаемый такой привлекательной концепцией «вселесной паутины», «понимание общих микоризных сетей безмерно расширилось», попав в конечном итоге в фильм «Аватар» Джеймса Камерона. Если помните, там фигурировала сияющая живая сеть, которая объединяла под землей все растения. Работы Симард и Рида подняли ряд новых волнующих вопросов. Что еще, помимо углерода, может передаваться между растениями? Насколько распространено это явление в природе? Может ли влияние этих сетей распространиться на целые леса или экосистемы? И что они меняют?
Никто не отрицает, что общие микоризные сети широко распространены в природе. Они неизбежны, учитывая свободные нравы растений и грибов, а также готовность микоризных сетей сливаться друг с другом. Однако не все убеждены в том, что они приносят какую-либо существенную пользу.
С одной стороны, после статьи Симард 1997 года в журнале Nature многие исследователи попробовали оценить трансфер веществ между растениями. Эксперименты показали, что кроме углерода по грибным сетям могут проходить азот, фосфор и вода в значительных количествах. В работе 2016 года приводилась информация о том, что между деревьями по грибным каналам может переноситься 280 килограммов углерода на гектар леса, то есть 4 % всего углерода, забираемого из атмосферы тем же гектаром леса за год. Этого достаточно, чтобы снабжать энергией и теплом дом средних размеров в течение недели. Эти выводы указывают на то, что общие микоризные сети играют важную экологическую роль.
С другой стороны, ряду исследователей не удалось зафиксировать трансфер веществ. Само по себе это не значит, что микоризные сети не играют никакой роли: только начавшему развиваться ростку, который сумел «подключиться» к большой наличной грибной сети, не понадобился бы углерод для выращивания с нуля собственной микоризной сети. Тем не менее не стоит использовать универсальный подход к разным экосистемам или разным типам грибов. Представляется, что во многих ситуациях общая микоризная система делает для каждого из своих растений-партнеров не больше, чем сделал бы один – «частный» – микоризный партнер.
Вполне естественно ожидать от общих микоризных сетей нестабильного поведения. Существует много разных типов микоризных отношений, и разные группы грибов могут вести себя совершенно по-разному. Более того, поведение симбионтов внутри союза гриба и растения может меняться в зависимости от обстоятельств. И все же разнородность экспериментальных данных породила разнобой мнений в исследовательском сообществе. С точки зрения некоторых, имеющаяся информация свидетельствует, что общие микоризные сети делают возможными особые формы взаимодействия и могут оказать глубокое влияние на состояние экосистем. Другие исследователи трактуют имеющиеся результаты иначе и приходят к выводу, что общие микоризные сети не создают уникальных экологических возможностей. Для растений же они не важнее, чем общее корневое или воздушное пространство.
Вертляницы помогают не погрязнуть в этих спорах. На самом деле они, оказывается, эти споры разрешают, ведь их зависимость от общих микоризных сетей абсолютна. Я обсудил этот предмет с Ридом, который занял недвусмысленную позицию: «Мысль о том, что трансфер веществ между растениями по грибным каналам ничего не значит, заведомо абсурдна». Вертляницы – постоянные потребители, яркое, живое доказательство того, что общие микоризные сети могут обеспечить уникальный образ жизни. Они относятся к так называемым микогетеротрофам. «Мико-», потому что зависят от грибов, доставляющих им питание; «гетеротрофы» (дословно – «питающийся за счет другого»), потому что сами они не преобразуют солнечный свет в энергию и должны раздобыть ее в другом месте. Не очень приятное название для таких харизматичных растений. В Панаме я дал им кличку «микогеты», хотя, признаю, это немногим лучше.
Вертляница и войрия, или растение-призрак, не единственные поклонницы такого образа жизни. Так же живут примерно 10 % видов растений. Подобно отношениям внутри лишайника и микоризным связям, микогетеротрофия является эволюционным рефреном и возникала независимо в процессе эволюции у по крайней мере 46 родов растений. Некоторые микогеты, такие как вертляницы и войрии, фотосинтезом не занимаются. Другие ведут себя как микогеты в молодости, но, взрослея, превращаются в доноров и начинают фотосинтезировать. Такой подход Кейти Филд назвала «берете сейчас, платите потом». Как Рид указал в разговоре со мной, все 25 000 видов орхидей – самое большое и, пожалуй, самое процветающее растительное семейство на поверхности Земли – являются микогетами на определенном этапе своего развития, берут ли они сейчас и платят потом или берут сейчас и продолжают брать потом. То, что микогеты научились раз за разом «взламывать сеть и подключаться к ней» ради собственной пользы, говорит о том, что это, вероятно, не такой уж и сложный трюк. И вправду для Рида и ряда других ученых микогеты – неизолированная категория. Они находятся на крайнем полюсе симбиотического континуума; потребители, потерявшие способность отдавать. Орхидеи, берущие сейчас и платящие потом, находятся где-то ближе к центру, как и ростки ели, изучаемые Симард.
Микогеты поразительны. Броские, ни на что не похожие, они выделяются из окружающей их растительности. Не имея причины быть зелеными или обзаводиться листьями, они свободны и могут позволить эволюции нести их в новых эстетических направлениях. Существует полностью желтая разновидность войрии. Снежный цветок – саркодес кроваво-красный (Sarcodes sanguinea) — «подобен пылающему огненному столбу», как писал американский натуралист Джон Мьюр в 1912 году. Им «восхищаются больше, чем любыми другими [растениями] в Калифорнии <…>. Его цвет напоминает нам о нашей собственной крови». (Мьюр размышлял о «тысячах невидимых струн», связывающих Природу в единое целое, но не мог знать, что в случае саркодеса так оно и было.) Крохотные как пылинки семена войрии поразили меня, когда я увидел под микроскопом, как они набухают, превращаясь в мясистые узелки. Марк-Андре Селосс, лектор в Национальном музее естественной истории в Париже, рассказал мне, что его пожизненное увлечение симбиозом зародилось именно тогда, когда он, 15-летним подростком, увидел ослепительно-белую орхидею-микогетеротрофа. Она напомнила, насколько неразделимы жизни растений и грибов. «Воспоминание об этом растении остается со мной на протяжении всей научной карьеры», – заметил он с нежностью.
Меня микогеты интересуют из-за того, на что указывают в подземной жизни грибов. Среди всего буйства растительной жизни в джунглях только войрии были верным признаком действующей общей грибной сети; именно взламывая «вселесные паутины» и подключаясь к ним, микогеты способны выжить. Войрия позволила мне, не прибегая к трудновыполнимым экспериментам, вычислить, переносится ли между растениями достаточное количество углерода. Идея пришла мне в голову во время разговора с друзьями-грибниками из Орегона, собиравшими грибы мацутаке. Мацутаке – микоризный гриб, плодовые тела которого иногда собирают еще до того, как они выглянут наружу из лесной подстилки. Часто имеется подсказка, указывающая на место, где их стоит искать. Мацутаке устанавливают связи с микогетом – кузеном вертляницы, стебель которого в красно-белую полоску напоминает сладкую карамельную тросточку. Это Allotropa virgata, аллотропа прутьевидная. Аллотропа устанавливает отношения только с мацутаке, и их присутствие – такой же явный признак процветания мацутаке, как и сами мацутаке. Аллотропа служит перископом, через который можно проникнуть взглядом в микоризные подземные владения.
И здесь можно бы предположить, что микогеты станут с годами восприниматься как индикаторы. Если аллотропы буквально указывают охотникам за мацутаке, где расположены подземные сети этих грибов, вертляницы служат биологам индикатором более крупной общности. Лишайники стали призмой для изучения симбиоза в целом; вертляницы же – для изучения общих микоризных сетей. Их специфическая внешность приводила к заключению о том, что материя может передаваться между растениями по общим грибным каналам в достаточном количестве, чтобы поддержать нестандартный образ жизни. Во всех системах энергия течет «под уклон» – от места, где ее больше, к месту, где ее меньше. Тепло идет от горячего Солнца в холодный космос. Запах трюфеля плывет по воздуху от зоны высокой концентрации к зоне более низкой. Ни то, ни другое не нужно перемещать насильственно. Пока существует такой «уклон», энергия будет течь от источника на вершине к подножию. Самое большое значение имеет крутизна склона.
Во многих случаях ресурсы по микоризным сетям идут «под уклон», от более крупных растений к более мелким. У более крупных растений обычно ресурсов больше, у них более развитая корневая система и больше доступа к свету. По отношению к более мелким растениям, растущим в тени, имеющим менее развитую корневую систему, эти растения являются донорами. Более мелкие растения – реципиенты. Орхидеи, берущие сейчас, а платящие позднее, начинают как реципиенты, а повзрослев, становятся донорами. Микогеты, такие как вертляницы и войрии, всегда остаются реципиентами.
Размер не всегда важен. Вектор движения от донора к реципиенту может поменяться на противоположный в зависимости от активности связанных друг с другом растений. Когда Симард затенила свои ростки елей, снизив их способность к фотосинтезу и таким образом акцентировав функцию реципиентов углерода, они стали получать больше углерода от своих доноров-берез. В других случаях исследователи наблюдали переход фосфора из корней умирающих растений к корням растущих поблизости здоровых побегов, разделяющих единую грибную сеть. Умирающие растения становились донорами питательных веществ, а здоровые растения – реципиентами.
В другом исследовании, проводившемся в канадских лесах на березах и Дугласовых пихтах, направление перемещения углерода менялось на противоположное дважды за один вегетационный период. Весной, когда пихта – вечнозеленое растение – фотосинтезировала, а на безлистной березе только начинали лопаться почки, береза вела себя как реципиент, и углерод тек от пихты к ней. Летом, когда береза была вся покрыта листьями, а пихта оказалась в затененном подлеске, направление течения углерода изменилось опять, и он устремился под уклон от березы к пихте. Осенью, когда береза начала сбрасывать листву, деревья опять поменялись ролями, и углерод потек под уклон от пихты к березе. Ресурсы переходили из областей изобилия в области дефицита.
Такое поведение представляется загадкой. В своей основе проблема состоит в следующем: зачем растениям отдавать ресурсы грибу, который затем передаст их соседнему растению – потенциальному конкуренту? На первый взгляд это кажется альтруизмом. Теория эволюции не очень хорошо ладит с альтруизмом, потому что альтруистическое поведение идет на пользу реципиенту и во вред донору. Если растение-донор поможет конкуренту себе в ущерб, у его генов будет меньше вероятности попасть к его потомкам, к следующему поколению. Если гены альтруиста не попадут в следующее поколение, такое поведение будет вскоре «вырвано с корнем».
Существует множество способов выйти из тупика. Можно предположить, что для доноров расходы в действительности таковыми не являются. Многим растениям доступно очень много света. Для них углерод – ресурс неограниченный. Если избыток углерода одного растения поступает в микоризную сеть, где им пользуются многие, затрат на альтруизм можно избежать, так как никто – ни донор, ни реципиент – не терпит убытков. Другая возможность состоит в том, что выигрывают оба – и отправитель, и получатель, – но в разное время. Орхидея может «взять сейчас», но если она «заплатит потом», то никто не понесет затрат. Береза может выиграть весной, когда получает углерод от пихты, но пихта, конечно же, выиграет от получения углерода от березы в высокий сезон, когда окажется в затененном подлеске.
Существуют и другие соображения. С точки зрения эволюции, растение может оказаться в выигрыше, помогая близкому родственнику передавать следующему поколению свои гены даже в ущерб самому себе, – явление, известное как родственный отбор. Некоторые исследователи изучали такую возможность, сравнивая количество углерода, переходящее между парой ростков Дугласовой пихты, являвшихся родственниками, и парой ростков, не связанных родством. Как и можно было ожидать, углерод тек от бо`льшего растения-донора к меньшему растению-реципиенту. Однако в некоторых случаях между родственными растениями проходил бо`льший объем углерода, чем между чужаками: растения-родственники пользовались бо`льшим количеством грибных каналов связи, чем посторонние растения, обеспечивая углероду больше путей передвижения между ними.
Самый быстрый способ разгадать головоломку – кардинально изменить точку зрения. Вы непременно заметите, что во всех этих историях об общих микоризных сетях главным действующим лицом выступали растения. Грибы в них фигурировали лишь постольку, поскольку они соединяют растения и служат проводниками между ними. Они стали чем-то чуть более значимым, чем система водопроводных труб, которой растения могут воспользоваться для перекачивания веществ между собой.
Это «растениецентризм» в действии. «Растениецентричный» взгляд на мир может исказить реальность. Когда больше внимания уделяется животным, чем растениям, это способствует тому, что мы перестаем видеть растения. Обращая больше внимания на растения, чем на грибы, мы перестаем видеть грибы. «Мне кажется, многие слишком конкретизируют вопрос об этих сетях, – сказал мне Селосс. – Некоторые говорят, что деревья пользуются социальной защитой, “пенсией”, описывают жизнь молодых деревьев в питомниках и рассказывают о том, что жизнь проще и “дешевле” для деревьев, живущих группами. Мне не очень нравится подобный взгляд, потому что он изображает грибы трубопроводом. А это не так. Гриб – живой организм с собственными интересами. Он активный участник системы. Многие люди придерживаются сугубо растениецентричного взгляда на микоризную сеть, возможно потому, что растения проще изучать, чем грибы».
Я разделяю это мнение. Конечно же, мы скатываемся до растениецентризма, потому что значение растений для нашей жизни более очевидно. Мы можем коснуться их и попробовать. Микоризные грибы уклончивы. Язык «вселесной паутины» не помогает. В таком контексте растения являются эквивалентами веб-страниц, а грибы – это гиперссылки, соединяющие их друг с другом. Растения – это роутеры, а грибы – оптоволоконные кабели.
На самом деле грибы – далеко не пассивные проводники. Как мы уже видели, мицелиевые сети могут разрешать сложные пространственные проблемы и развили в себе тонко настроенную способность переносить вещества. Хотя вещества склонны течь по грибным сетям «под уклон», от донора к реципиенту, транспортировка редко происходит только путем диффузии: это слишком медленно. Реки клеточных жидкостей, которые текут по грибным гифам, ускоряют транспортировку, и хотя эти потоки в целом управляются динамикой движения от донора к реципиенту, грибы могут направлять поток, выращивая, уплотняя и купируя части сети – то есть объединяясь, сливаясь полностью с другими сетями. Без способности регулировать поток, проходящий по их сетям, большая часть жизненных циклов грибов, включая и сложную хореографию выращивания плодовых тел, была бы невозможна.
Грибы способны управлять транспортировкой веществ в своих сетях и по-другому. Как предполагает Кирс в своем исследовании, грибы в какой-то степени могут контролировать свои «торговые» отношения – «награждая» более склонных к сотрудничеству партнеров среди связанных с ними растений, или накапливая минеральные вещества в своих тканях, или перемещая ресурсы ради оптимального «обменного курса». В работе Кирс по распределению ресурсов фосфор перемещался по градиенту от областей, где он был в изобилии, к областям, где его не хватало, однако происходило это передвижение намного быстрее, чем при обычной диффузии, – вероятно, грибом были задействованы микроканальные «двигатели». Эти активные системы транспортировки позволяют грибам доставлять вещества в различные части своей сети в любом направлении, иногда в обе стороны одновременно независимо от «уклона» между донором и реципиентом.
«Вселесная паутина» – метафора, не совсем верно отражающая реальность и по другим причинам. Мысль о существовании единственного вида такой паутины вводит в заблуждение. Грибы создают сложно переплетенные паутины-сети независимо от того, связывают ли они между собой растения или нет. Общие микоризные сети – случай особый – грибные сети, в которые оказываются вовлечены растения. Экосистемы пронизаны паутинами мицелия немикоризных грибов, соединяющими различные организмы. Гнилостные грибы, которые изучает Линн Бодди, например, странствуя по экосистемам, распространяются на большие расстояния и соединяют тронутые тленом листья с упавшими сучьями, большие гниющие пни – с разлагающимися корнями. То же можно сказать и о мицелиевых сетях опенка обыкновенного, рекордсменах по размаху, вытягивающихся на километры. Эти грибы создают «вселесные паутины» другого рода – паутины, в основе которых лежит не обеспечение питанием растений, а употребление в пищу их самих.
Связующий элемент во «вселесных паутинах» – это гриб, живущий собственной жизнью. Эта ремарка существенно меняет дело. Когда мы начинаем воспринимать грибы как активных участников, все становится другим. Включение грибов в сюжет заставляет нас рассматривать ситуацию с позиции грибов. Такой взгляд очень полезен, когда задаешься вопросом, в чьих интересах используются общие микоризные сети. Кто от этого выигрывает?
Микоризный гриб, поддерживающий жизнь в связанных с ним разнообразных растениях, несомненно, в выигрыше: разнообразие портфолио растений-партнеров служит ему гарантией в случае гибели одного из них. Если гриб зависит от нескольких орхидей, а одна из них не в состоянии обеспечивать его углеродом, пока не повзрослеет, гриб выиграет, поддерживая молодую орхидею, пока она растет, – позволяя ей «брать сейчас» при условии, что она «заплатит потом». Принимая микоцетрическую позицию, можно избежать проблемы с альтруизмом. Это отношение также делает гриб центральной фигурой – брокером сложно переплетенных отношений, способным посредничать во взаимодействиях растений, не забывая при этом о своих собственных, грибных, потребностях.
Независимо от того, принимаем ли мы позицию грибов или позицию растений, во многих ситуациях растения, вовлеченные в микоризные сети, получают явные преимущества: в целом растения, делящие единую сеть с другими, растут быстрее и выживают в сложных условиях лучше, чем соседние растения, исключенные из общей сети. Эти открытия вдохновили появление концепции «вселесных паутин» как мест заботы, взаимопомощи и совместного хозяйства, благодаря которым растения могут освободиться от жестких иерархических условий конкуренции за источники питания. Эти представления имеют много общего с фантазиями об интернете эпохи 1990-х: энтузиасты с сияющими взорами грезили о том, что всемирная паутина спасет от жестких властных структур XX века и введет человечество в цифровую утопию.
Экосистемы, как и человеческие общества, редко бывают столь одномерными. Некоторые исследователи, такие как Рид, считают, что утопические представления о почве являются бесстыдным переносом человеческих ценностей на другие системы, не имеющие отношения к человеческим; другие, такие как Кирс, утверждают, что утопические взгляды оставляют без внимания многочисленные ситуации, когда сотрудничество – сплав конкуренции и кооперации. Главная проблема для сторонников микоутопий заключается в том, что, как и интернет, общие микоризные сети не всегда приносят пользу. «Вселесные паутины» – мощные усилители взаимодействий растений, грибов и бактерий.
Большая часть исследований, обнаруживших, что растения выигрывают от участия в общих микоризных сетях, проводились в зонах умеренного климата на деревьях, которые устанавливают отношения с определенным типом микоризного гриба – «эктомикоризными» грибами. Другие типы микоризных грибов могут вести себя иначе. В некоторых случаях растению, кажется, безразлично, есть ли у него своя собственная грибная сеть или оно делит грибную сеть с другими растениями – хотя в таких ситуациях гриб все же получает преимущества от формирования общей сети, так как получает доступ к бо`льшему количеству растений-партнеров. Иногда участие в общей сети наносит растению откровенный вред. Грибы контролируют поставки минеральных веществ, которые они добывают из почвы, и они могут предпочесть обменивать их на углерод у более крупных растений, которые одновременно и являются более богатыми источниками углерода, и способны принять больше минеральных веществ из почвы. Такое неравномерное распределение может усилить преимущества больших растений по сравнению с более мелкими, разделяющими одну и ту же сеть. В подобных ситуациях более мелкие растения оказываются в выигрыше только тогда, когда их связь с общей сетью разорвана или когда число более крупных растений, участвующих в общей сети – и получающих непропорционально большие количества питательных веществ, – сокращается.
Участие в общих микоризных сетях может иметь и более неоднозначные последствия. Ряд растений вырабатывает химические вещества, которые останавливают рост или убивают растущие поблизости растения. В обычных условиях перемещение таких веществ в почве проходит медленно. И они не всегда достигают токсической концентрации. Микоризные сети могут способствовать преодолению этих недостатков, иногда предоставляя «грибную скоростную полосу» или «сверхскоростную трассу» растениям, распространяющим ядовитые отпугивающие вещества. Во время одного эксперимента токсичное соединение из опавших листьев грецкого ореха прошло по микоризной сети и скопилось вокруг корней томатов, снизив скорость их роста.
Иными словами, «вселесные паутины» выполняют значительно больше функций, чем перенос ресурсов – богатых ли энергией углеродных соединений, питательных ли веществ или воды. Кроме ядов, по общим микоризным сетям могут перемещаться регулирующие рост и развитие растений гормоны. У многих видов грибов содержащие ДНК ядра и другие генетические элементы, такие как вирусы или РНК, свободно путешествуют по мицелию, что позволяет предположить, что генетический материал может передаваться между растениями по грибным каналам – хотя эти возможности почти не изучены.
Одно из самых удивительных свойств «вселесных паутин», – то, как они охватывают другие организмы помимо растений. Грибные сети обеспечивают бактериям трассы, по которым они могут обойти полосу препятствий почвы. В некоторых случаях хищные бактерии используют мицелиевые сети для преследования своей добычи и охоты на нее. Некоторые бактерии селятся внутри самих гиф и ускоряют рост грибов, стимулируют их метаболизм, снабжают витаминами и даже влияют на отношения грибов с их партнерами-растениями. Один из видов микоризных грибов, сморчок толстоногий (Morcella crassipes), на самом деле занимается разведением бактерий: гриб «сажает» популяции бактерий, выращивает их, собирает их урожай и поглощает его. В сети происходит разделение труда: некоторые части грибной системы отвечают за производство пищевых продуктов, а другие – за их потребление.
Существуют еще более экстравагантные возможности. Растения выделяют всевозможные химические вещества. К примеру, когда на кормовые бобы нападает тля, они выпускают шлейфы летучих соединений, которые медленно выплывают из ранок и привлекают паразитирующих ос-наездников, которые охотятся на тлю. Эти «инфохимикаты» – названием они обязаны тому факту, что сообщают о состоянии растения, – один из способов общения растений как с разными частями своего тела, так и с другими организмами.
Могли ли бы «инфохимикаты» переходить от растения к растению под землей по общим грибным сетям? Этот вопрос увлек Люси Гилберт и Дэвида Джонсона, тогда работавших в Университете Абердина в Шотландии. Чтобы найти ответ на этот вопрос, они провели хорошо продуманный эксперимент. Кормовым бобам либо давали возможность подсоединиться к общей микоризной сети, либо не позволяли сделать это с помощью мелкоячеистой нейлоновой сетки. Сетка не мешала воде и химикатам проходить, но не давала грибам, соединенным с разными растениями, вступать в прямой контакт. Как только бобы выросли, тле позволили напасть на листья одного из растений в сети. Полиэтиленовые мешки, закрывавшие растения, мешали им передавать «инфохимикаты» по воздуху.
Гилберт и Джонсон получили явное подтверждение своей гипотезе. Бобовые растения, соединенные с зараженным тлей растением через общую грибную сеть, увеличили производство летучих защитных соединений, хотя сами они не подвергались нападению тли. Шлейфы летучих соединений, выпущенные растениями, были достаточно велики, чтобы привлечь ос-наездников. Это позволяет предположить, что информация, проходящая по грибным каналам между растениями, могла вызвать изменения в реальной природной обстановке. Гилберт назвала это в разговоре со мной «совершенно новым» изысканием. Оно раскрыло ранее неизвестную функцию общих микоризных сетей. Растение-донор не только могло воздействовать на растение-реципиента, но его влияние могло выйти за пределы принимающего растения в виде летучих химических соединений. Общая микоризная сеть оказывала влияние не только на отношения между двумя растениями, но также на отношения между этими растениями, их вредителями-тлями и их союзницами-осами.
В 2013 году стало понятно, что результат, полученный Гилберт и Джонсоном, не является аномалией. Подобное явление наблюдали, когда томаты подверглись нападению гусениц, а также между Дугласовой пихтой и ростками сосны, когда на них напали листовертки-почкоеды. Эти исследования открывают новые удивительные возможности. Многие из ученых, с которыми я разговаривал, разделяют мнение, что передача информации растениями через грибные сети – один из самых захватывающих аспектов поведения микоризы. Тем не менее хорошие эксперименты поднимают больше вопросов, чем находят ответов. «На что же в реальности реагируют растения и что на самом деле делает гриб?» – размышлял Джонсон.
По одной из гипотез, «инфохимикаты» поступают от растения к растению по общим грибным сетям. Это кажется вполне вероятным, учитывая, что растения, как известно, используют химические вещества для передачи информации над землей. Другой интригующей возможностью являются электрические импульсы, проходящие по грибным гифам. Как обнаружили Стивен Олссон и его коллеги нейробиологи, мицелий некоторых грибов – включая и мицелий микоризных грибов – может проводить всплески электрической активности, чувствительные к стимуляции. Растения также используют электрические сигналы для передачи информации в разные части своего организма. Никто не исследовал, может ли электрический сигнал проходить от растения к грибу и от гриба к растению, хотя это не так уж и невозможно. Тем не менее Гилберт твердо стоит на своем: «Мы не знаем. То, что эти сигналы вообще существуют, – настоящее открытие. Мы в самом начале новой эпохи исследований». Для нее приоритетом является определение природы сигнала. «Не зная, на что реагируют растения, мы не можем ответить на вопросы о том, как сигнал контролируется или как он в действительности посылается».
Нужно еще столько обнаружить. Если информация может проходить по грибным сетям, объединяя маленькие кормовые бобы, растущие в горшках в теплице, что же происходит в природных экосистемах? По сравнению с бесчисленными толпами химических подсказок и сигналов, дрейфующих по воздуху между растениями, насколько важную роль играют грибные пути? Как далеко может проникнуть путешествующая под землей по грибным сетям информация? Джонсон и Гилберт проводят эксперименты, во время которых они соединяют несколько растений в «гирляндную цепь», чтобы посмотреть, может ли информация передаваться от одного растения к другому, затем к третьему ретрансляцией. Экологические последствия могли бы быть глубокими, однако Джонсон осторожен. «Внезапно увеличить масштаб лабораторных открытий и перенести их на целые леса, представив, что деревья в них разговаривают и обмениваются между собой информацией, – для меня чересчур, – сказал он мне. – Люди спешат экстраполировать результаты исследований горшечного растения на целую экосистему».
Что именно проходит по грибным сетям между растениями, вопрос нелегкий для всех ученых, исследующих «вселесные паутины». И именно недостаток знаний заводит в некоторые концептуальные тупики. Например, не зная, как информация передается между растениями, невозможно определить, «отправляют» ли действительно растения-доноры послания-предупреждения об опасности или растения-реципиенты просто подслушивают тревожные сигналы своих соседей. В сценарии с подслушиванием нет ничего, что можно было бы признать намеренным поведением со стороны отправителя. Как объяснила Кирс, «если на дерево напало насекомое, конечно, оно будет кричать на своем языке: оно будет выделять какое-нибудь химическое вещество, чтобы подготовиться к нападению». Эти химические вещества вполне могут выплеснуться на другое растение, пройдя через сеть. Активно ничего не посылается. Растение-реципиент просто случайно замечает то, что происходит. Джонсон использует ту же аналогию. Если мы слышим, как кто-то кричит, это не означает, что кричат, чтобы предупредить нас о чем-то. Конечно, крик может заставить нас изменить свое поведение, но он не указывает на какое-либо намерение со стороны кричащего: «Вы просто подслушиваете их реакцию на конкретную ситуацию».
Это может показаться казуистикой, но многое зависит от того, как мы понимаем взаимодействие. В любом случае раздражитель переходит от одного растения к другому, позволяя растению-реципиенту подготовиться к нападению. Тем не менее если растения действительно посылают сообщение, мы бы восприняли его как сигнал тревоги. Если же их соседи подслушивают, мы бы рассматривали эту информацию как подсказку. Как конкретно интерпретировать поведение общей микоризной сети – предмет щепетильный. Некоторых исследователей беспокоит то, как обычно изображают «вселесные паутины». «Одно то, что мы обнаружили, что растения могут реагировать на информацию, поступающую от их соседей, – сказал мне Джонсон, – еще не означает, что существует и действует какая-то альтруистическая сеть взаимопомощи». Мысль о том, что деревья переговариваются друг с другом, предупреждая о надвигающейся опасности – это антропоморфное заблуждение. «Очень заманчиво представлять себе такую картину, – признал он, – но в конечном итоге это полная чушь».
Образ кричащего человека не очень полезен. Эту метафору можно использовать как для иллюстрации одной точки зрения, так и противоположной ей. Люди кричат, когда они попали в беду, поражены, взволнованы или им больно. Люди также кричат, чтобы другие узнали об их бедственном положении. Не всегда просто распутать этот клубок и отделить причину от следствия, даже если сразу спросить об этом терпящего бедствие человека. С растениями еще сложнее. Возможно, задавать трудный вопрос о том, предупреждают ли растения друг друга о нападении тли или соседи пострадавшей особи просто случайно подслушали ее химические вскрики, неправильно. Как заметила Кирс: «Разбираться нужно с историями, которые мы рассказываем. Мне бы действительно хотелось перейти от изложения к пониманию самого явления». И опять же, возможно, полезнее было бы задать в первую очередь вопрос о том, почему такое поведение сложилось в процессе развития: кто в выигрыше?
Кормовой боб-реципиент, несомненно, выигрывает от предупреждения об опасности: к тому моменту, когда тля до него доберется, он уже успеет активировать свои средства защиты. Но какую пользу это принесет бобу, посылающему сигнал тревоги, чтобы предупредить своих соседей? Мы снова натыкаемся на проблему альтруизма. И опять самым быстрым выходом из лабиринта является кардинальное изменение точки зрения. Почему гриб может оказаться в выигрыше, проводя по своей сети предупреждение об опасности растениям, с которыми он живет?
Если гриб соединен с несколькими растениями и на одно из них нападает тля, гриб пострадает не меньше растения. Если целая группа растений войдет в состояние сильнейшей тревоги, они выпустят большой шлейф летучих химических веществ, призывающих ос-наездников, чем сможет одно растение. Любой гриб, способный усилить химический сигнал тревоги, выиграет от этой способности – конечно, растения тоже окажутся в выигрыше, при этом не неся никаких расходов. Подобным же образом, кода сигнал бедствия поступает от больного растения к здоровому, именно гриб выигрывает от того, что помогает выжить здоровому растению. «Вообразите, что вы находитесь в лесу, где создается впечатление, что деревья делятся друг с другом своими ресурсами, – объяснила Гилберт, – кажется более вероятным, что гриб, связанный с ними, заметив, что дереву А нездоровится в данный момент, а дерево В вполне здорово, переносит часть ресурсов к дереву А. Если рассматривать ситуацию с позиции гриба, все встает на свои места».
Многие работы по исследованию общих микоризных сетей ограничиваются изучением пар растений. Рид делал снимки перехода меченых атомов от корней одного растения к корням другого. Симард отслеживала движение радиоактивных меток от растения-донора к растениям-реципиентам. Только уменьшение числа растений до незначительного позволяло проводить эти эксперименты. Но «вселесные паутины» могут простираться на десятки или сотни метров, а возможно, и дальше. А тогда что? Выгляньте наружу. Деревья, кусты, трава, плети вьющихся растений, цветы. Кто с кем соединяется и как? Как бы выглядела карта «вселесной паутины»?
Не представляя себе архитектуры общей грибной сети, трудно понять, что происходит. Нам известно, что ресурсы и передающие информацию химические вещества обычно перемещаются по сетям под уклон, от областей, где они в изобилии, к областям дефицита, но ведь этим все не исчерпывается. Ваше сердце – это насос, который заставляет кровь течь «под уклон», создавая области высокого и низкого давления. Динамика движения от донора к реципиенту может объяснить, почему кровь циркулирует, но не то, почему кровь поступает к вашим органам так, как это происходит. Это связано с сосудами, с их толщиной, разветвленностью, с тем, как они проходят по вашему телу. Примерно то же происходит и в микоризных сетях. Материя не сможет проходить от источника к приемнику, если отсутствует сама сеть, по которой она могла бы течь.
Кевин Бейлер, один из бывших учеников Симард, является главой единственных двух исследований, которые в конце 2000-х годов были проведены для нанесения на карту пространственной структуры общей микоризной сети. Бейлер выбрал относительно простую экосистему – лес в Британской Колумбии, состоявший из Дугласовых пихт разных возрастов. Он применил метод, используемый при проведении тестов на определение отцовства у людей. На экспериментальном участке 30 × 30 метров он идентифицировал генетические отпечатки каждого отдельного гриба и каждого дерева, что позволило ему точно выяснить, кто с кем связан. Уровень детализации совершенно необычный. Многие исследования рассматривали то, какие виды растений и грибов взаимодействуют друг с другом, но очень немногие шли дальше, задаваясь вопросом о том, какие особи грибов и растений действительно связаны между собой.
Карты, составленные Бейлером, потрясающи. Грибные сети простираются на десятки метров, но деревья соединены неравномерно. У молодых деревьев связей мало, у более старых их много. Дерево с самыми обширными связями соединено с 47 другими деревьями, и будь участок больше, оно было бы связано с 250 деревьями. Если пальцем мерить расстояние на карте сети, скача от дерева к дереву, – что, конечно, является чистой воды растениецентризмом, – передвигаться сквозь лес придется медленно и неравномерно, прыгая по сети от одного дерева с обширными связями к другому, которых там очень мало. Через эти «узлы» можно всего за три шага добраться до любого другого дерева.
В 1999 году, когда Барабаши и его коллеги опубликовали первую карту всемирной паутины, они обнаружили похожую схему. Веб-страницы соединены с другими веб-страницами, но не у всех страниц одинаковое количество ссылок. У подавляющего большинства страниц всего несколько связей. Малое число страниц имеют чрезвычайно многочисленные связи. Разница между страницами с большим количеством связей-ссылок и страницами с малым количеством связей колоссальна: около 80 % ссылок в сети указывают на 15 % страниц. То же самое можно сказать и о других типах сетей – от авиамаршрутов по всему свету до нейронных сетей в мозге. В каждом случае узловые точки с большим количеством связей позволяют пересечь всю сеть всего за несколько шагов. Отчасти именно эти свойства любой сети – так называемая безмасштабность – позволяют болезням, новостям и модам изливаться каскадами на население. Та же безмасштабность общей микоризной сети может помочь молодому растению выжить в сильно затененном подлеске или индикаторным химическим веществам – разойтись кругами по лесу. «Молоденький росток очень быстро окажется связан со сложной, запутанной и стабильной сетью, – объяснял Бейлер. – Можно было бы предположить, что вероятность того, что оно выживет, увеличится, как и общая жизнестойкость леса». Но только до определенной точки. Именно безмасштабность делает «вселесную паутину» уязвимой перед направленной атакой. Удалите одновременно Google, Amazon и Facebook или закройте три самых крупных в мире международных аэропорта, и вы посеете хаос. Выборочно срубите большие «узловые» деревья – что делают многие коммерческие лесозаготовительные компании в попытке получить самую ценную древесину, – и это вызовет серьезные нарушения в жизни леса.
Здесь не существует действующих фундаментальных законов. Масштабно-инвариантные свойства проявляются во всех развивающихся сетях. «Большинство возникающих в мире сетей являются результатом того или иного процесса роста, – объяснял Барабаши. – У нового узла больше шансов присоединиться к узлу с большим количеством связей, чем к узлу-изгою. Таким образом, старые узлы обзаводятся еще большим числом связей». Как говорил Бейлер, «вы можете воспринимать эти микоризные сети как процесс “заражения”. Есть главные деревья, и сеть разрастается от них. Деревья, соединенные с большим числом других деревьев, обычно накапливают еще больше связей быстрее остальных».
Значит ли это, что архитектура «вселесных паутин» будет похожей в других частях света? Возможно, но мы закартографировали недостаточно сетей, чтобы с уверенностью утверждать это. Экстраполяция того, что известно о растении в цветочном горшке, на целую экосистему вызывает сложности; экстраполяция сведений, полученных на 30-метровом участке, не менее проблематична. Быть растением можно по-разному, так же как и быть грибом можно самыми разными способами. Некоторые растения способны завязывать отношения с тысячами видов грибов; некоторые растения образуют связи меньше чем с десятью и создают замкнутые сети только с членами своего собственного вида. Мицелий некоторых типов грибов легко прививает себя на другие мицелиевые сети и образует с ними большие сложносоставные единства; другие грибы скорее склонны к самоизоляции. В Панаме я узнал, что войрия зависела от одного-единственного вида грибов, но такая узкая специализация вовсе не ограничивала ее возможностей: ее грибной партнер был самым распространенным микоризным грибом в лесу, и у него были завязаны отношения со всеми широко распространенными видами деревьев, что позволяло войрии подключиться к самому большому числу других растений. Другие микогеты, росшие в том же лесу, разработали другую стратегию и наладили связи с целым рядом видов грибов.
Даже на небольшом участке леса, который Бейлер выбрал для изучения – частично из-за простоты, – мы упускаем какие-то части головоломки. Его карты показывают, как деревья и грибы были расположены и связаны, но мы не знаем, чем они в действительности занимались. «Я рассматривал только один вид деревьев и два вида грибов – ничего даже близко напоминающего все лесное сообщество, – размышлял он. – Это был только мимолетный взгляд; крохотное окошко в огромную открытую систему. Все, что я описал, – это грубое приуменьшение степени взаимосвязанности леса».
Войрия потеряла способность формировать сложную корневую систему. Она ей не нужна; корневой системой ей служат общие грибные сети. Там, где когда-то находились корни, у войрии растут пучки мясистых «пальцев». Вскройте их, и вы увидите внутри клеток войрии извивающиеся и прорывающиеся сквозь них гифы. Иногда ее корни даже не погружены в землю, а просто сидят маленькими кулачками на поверхности почвы. Войрию легко сорвать. Ее грибные связки рвутся моментально. Кажется странным, что жизненные артерии растения можно так легко повредить. Связь войрии с ее сетью – это вопрос ее жизни и смерти, и тем не менее физические связующие нити настолько непрочны. Я часто пытался понять, как весь строительный материал, необходимый для создания целого растения, мог переместиться по такому хрупкому путепроводу.
Как и во время большинства исследований микоризных сетей, поиск ответов на вопросы о войрии требовал собрать эти цветы, разрывая таким образом их связь с их сетью. Я много дней занимался этим. И много дней думал об иронии ситуации, вынуждавшей меня разрывать те самые связи, которые я изучал. Конечно, биологи часто губят организмы, которые надеются понять. Я свыкся с этой мыслью, насколько вообще можно с ней свыкнуться. Однако разрывать связи в сети, чтобы изучить эту сеть, представлялось мне верхом абсурда. Ученые Илья Пригожин и Изабель Стенгерс заметили, что попытки разбить сложную систему на составляющие ее компоненты часто не приводили к удовлетворительным объяснениям; мы редко понимаем, как заново сложить вместе все кусочки головоломки. «Вселесные паутины» представляют собой особую сложность. Мы все еще не знаем точно, как мицелиевые сети координируют свои собственные действия и поддерживают связь с отдельными частями своей собственной сети, не говоря уже о том, как они управляют своими взаимодействиями с многочисленными растениями в природных почвах. Тем не менее мы знаем достаточно, чтобы понимать, что мицелиевые сети – это скорее непрерывные процессы, нежели объекты. Мы знаем, что мицелиевые сети способны сливаться друг с другом, отделяться от других сетей, перенаправлять поток веществ по своим системам, выделять – и реагировать на – шлейфы летучих химических веществ. Мы знаем, что микоризные сети образуют и изменяют свои связи с растениями, сплетаясь с ними, расплетаясь и вновь привязываясь к ним. Короче говоря, мы знаем, что «вселесные паутины» – это динамические системы, находящиеся в непрекращающемся мерцающем и трепещущем круговом движении.
Сущности, ведущие себя подобным образом, условно называются сложными адаптивными системами. Сложные, потому что их действия трудно предсказать, ориентируясь только на понимание принципов действия составляющих их частей; адаптивные, потому что они самоорганизуются в новые формы или схемы поведения по ситуации. Вы – как и все организмы – представляете собой комплексную адаптивную систему. Такой же системой является всемирная паутина, а также мозг, колонии термитов, роящиеся пчелы, города и финансовые рынки – и это всего несколько примеров. Внутри комплексных адаптивных систем незначительные изменения могут вызвать серьезные последствия, которые можно будет увидеть только при взгляде на общую картину. Очень редко можно провести четкую стрелку-указатель от причины к следствию. Раздражители-стимулы, которые сами по себе могут быть чем-то совершенно непримечательным, превращаются в вихри часто поразительных реакций. Удачным примером такого рода динамических нелинейных процессов служат финансовые кризисы. А также чихание и оргазмы.
Тогда как лучше всего рассматривать общие микоризные сети? С чем мы имеем дело? Со сверхорганизмом? Метрополем? Живым интернетом? Яслями для деревьев? Социалистическим строем в почве? Нерегулируемыми рынками эпохи позднего капитализма, где грибы толпятся, соперничая друг с другом, в торговом зале лесной стоковой биржи? А может быть, это грибной феодализм, в котором верховные владыки-грибы помыкают своими батраками-растениями ради своего только блага? Все эти образы весьма проблематичны. Вопросы, поднимаемые «вселесными паутинами», ведут дальше, чем позволяет представить себе этот ограниченный состав действующих лиц. И все же нам действительно придется включить воображение. Вероятно, нам придется свыкнуться с мыслью об общих микоризных сетях как о подобных, потенциально более изученных сложных комплексных адаптивных системах, если мы хотим понять, как и вправду ведут себя общие микоризные сети в комплексных экосистемах – что они собственно делают, а не на что они способны.
Симард проводит параллели между общими микоризными сетями в лесу и нейронными сетями в мозге животных. Она утверждает, что неврология может обеспечить методы для лучшего понимания того, как возникают сложные типы поведения в экосистемах, связанных грибными сетями. Неврология дольше, чем микология, занимается тем, как динамические самоналаживающиеся системы могут вызывать разные типы сложного адаптивного поведения. Она не имеет в виду, что микоризные сети являются мозгом. Эти две системы отличаются по многим параметрам. Во-первых, мозг состоит из клеток, принадлежащих одному организму, а не множеству организмов различных видов. Мозг анатомически заключен в рамки и не может продвигаться по местности, на что способны грибные сети. И все же сравнение соблазнительно. Трудности, с которыми сталкиваются ученые, изучающие «вселесные паутины», и нейробиологи не так уж различаются, хотя неврология имеет фору в несколько десятилетий и миллиардов долларов. «Неврологи препарируют мозг, чтобы выявить нейронные сети, – шутил Барабаши. – Вам, экологам, приходится препарировать лес, чтобы вы смогли понять и увидеть, где находятся все корни и все грибы и кто с кем связан».
Симард замечает, что, оказывается, действительно существуют некоторые информативные – хоть и поверхностные – зоны частичного совпадения. Сети мозговой активности обладают масштабно-инвариантными свойствами с несколькими модулями, характеризуемыми большим количеством связей и позволяющими информации пройти из пункта А в пункт В всего в несколько итераций. Мозг, как и грибные сети, может изменить свою конфигурацию – или «адаптировать электрический контур» – в зависимости от вновь сложившейся ситуации. Малоиспользуемые нейронные пути удаляются, как и малоиспользуемые участки мицелия. Новые связи между нейронами – или синапсы – образуются и укрепляются, как и связи между грибами и корнями деревьев. Химические вещества – нейротрансмиттеры – проходят через синапсы, позволяя информации поступать от одного нерва к другому; сходным образом химические вещества проходят по микоризным «синапсам» от гриба к растению или от растения к грибу, в некоторых случаях перенося информацию от одного к другому. Известно, что аминокислоты глутамат и глицин – основные сигнальные молекулы в растениях и самые распространенные нейротрансмиттеры в головном и спинном мозге животных – переходят от растений к грибам и обратно по этим узлам.
Однако в общем и целом действия «вселесных паутин» неоднозначны, и наши аналогии с мозгом – как и с интернетом или политикой – накладывают свои ограничения. Как бы эти сети ни координировали себя, как бы подсказки – или все-таки сигналы – ни проходили по грибным каналам, грибные сети частично перекрывают друг друга, и у них нестабильные границы, которые, разрастаясь, стремятся вырваться наружу, затягивая в себя многое по пути. Включая бактерий, которые мигрируют с места на место внутри грибного мицелия. И тлей, и ос-наездников, паразитирующих на них, привлеченных на пиршество летучими соединениями, выделяемыми кормовыми бобовыми растениями. Еще один шаг, и люди тоже окажутся на крючке. Сознательно или нет, но мы взаимодействуем с микоризными сетями столько же времени, сколько мы взаимодействуем с растениями.
Способны ли мы освободиться от этих метафор, выйти разумом за пределы черепа и научиться говорить о «вселесных паутинах», не опираясь ни на один из наших затертых человеческих тотемов? Сможем ли мы допустить, чтобы микоризные сети стали вопросами, а не заранее известными ответами? «Я стараюсь просто смотреть на систему и позволить лишайнику быть лишайником». Обсуждения «вселесных паутин» часто возвращают меня мыслями к Тоби Сприбиллу, исследователю, который открывает все новых и новых партнеров в лишайниковом симбиозе. «Вселесные паутины» – не лишайники, хотя представление о них как об огромных лишайниках, по которым можно побродить, внесло бы приятное разнообразие в метафоры, которые нам предлагаются. Тем не менее мне хотелось бы понять, способны ли мы извлечь урок из терпения Сприбилла. Способны ли мы отойти в сторону и позволить звучащим на разные лады роям растений, грибов и бактерий, которые составляют наши дома и миры, быть самими собой и непохожими ни на что другое? Что тогда случится с нашим сознанием и разумом?
