Книга: Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее
Назад: Глава четвертая Мицелиевое сознание
Дальше: Глава шестая «Вселесная паутина»

Глава пятая
Что было до корней

Ты никогда не освободишься от меня.
Он в дерево превратит меня.

«До свиданья» не говори мне.
Как выглядит небо, опиши мне.

– ТОМ УЭЙТС / КЭТЛИН БРЕННАН
Около 600 миллионов лет назад зеленые водоросли начали выбираться из пресного мелководья на сушу. Это были предки всех существующих на Земле растений. Эволюция флоры преобразовала планету и ее атмосферу; она стала одним из главных переходных этапов в истории жизни – колоссальным прорывом в биологической перспективе. Сегодня растения составляют 80 % биомассы и являются основой пищевых цепочек, поддерживающих существование почти всех земных организмов.
До появления растений Земля была обожжена и пустынна. Условия были экстремальными: резкие перепады температуры, каменистые пейзажи. Не существовало ничего похожего на почву. Питательные вещества были заключены внутри камней и минералов, а климат был засушливым. Это не значит, что жизнь полностью отсутствовала. Фотосинтезирующие бактерии, водоросли-экстремофилы и грибы, образовав своеобразную коросту, смогли прижиться на открытом воздухе. Однако суровые условия подразумевали, что жизнь на Земле развивалась преимущественно в водной среде. Мелкие теплые моря и лагуны кишели водорослями и животными. Морские скорпионы – эвриптериды – в несколько метров длиной бродили по дну океана; трилобиты распахивали илистые донные отложения лопатообразными мордами. Отдельные кораллы начали образовывать рифы. Благоденствовали моллюски.
Несмотря на сравнительно негостеприимные условия, суша предоставляла многочисленные возможности для любых фотосинтезирующих организмов, которые могли справиться с имевшимися трудностями. Свет, проходя через водяной фильтр, не становился менее интенсивным, и углекислый газ был более доступен – важный стимул для тех, кто его поглощает. Но у водорослей – предков современных растений – не было ни корней, ни других инструментов для запасания или перемещения воды и никакого опыта по извлечению питательных веществ из твердой почвы. Как же им удалось преодолеть эти трудности и завершить переход к жизни на суше?
Когда доходит до объединения отдельных биографий живых организмов, ученым трудно достичь согласия. Убедительных доказательств, как правило, мало, а существующие фрагментарные свидетельства могут быть использованы для подтверждения разных точек зрения. И все же в тлеющих спорах вокруг истоков жизни приводится одно обстоятельство, в отношении которого мнения сходятся: водоросли смогли выбраться на сушу только благодаря тому, что завязали отношения с грибами.
Эти ранние союзы превратились в то, что мы сейчас называем микоризными отношениями. Сегодня более 90 % всех видов растений зависят от микоризных грибов. Это правило, а не исключение: грибы – более прочная основа растительного мира, чем плоды, цветы, листья, древесина и даже корни. На этом тесном, интимном партнерстве, в котором есть все – сотрудничество, конфликты и соперничество, – растения и грибы строят коллективное процветание, на котором держатся наше прошлое, настоящее и будущее. Мы немыслимы без них, но как редко о них думаем. Какой ценой обходится нам это небрежение, уже очевидно. Мы не можем позволить себе относиться к этому так и дальше.
Как мы уже могли убедиться, водоросли и грибы имеют обыкновение сотрудничать. Их объединения могут принимать различные формы. Одним примером являются лишайники. Водоросли, в том числе микроскопические, – другой пример; многие водоросли, выброшенные волнами на берег, зависят от грибов, обеспечивающих их питанием и не дающих им высохнуть. Кроме того, есть еще мягкие зеленые шары, выращенные за несколько дней исследователями в Гарварде: они представили друг другу независимо растущие грибы и микроскопические водоросли. До тех пор пока грибы и водоросли сочетаются с точки зрения экологии, пока они вместе исполняют метаболическую «мелодию», которую ни один из них не вытянет в отдельности, они будут формировать все новые и новые симбиотические отношения. В этом плане союз грибов и водорослей, из которого возникли растения, – часть большой истории, эволюционный рефрен.
В то время как в рамках лишайника партнеры образуют «тело», совершенно непохожее на собственные «тела», с партнерами в микоризных отношениях такого не происходит: растения по-прежнему выглядят как растения, а в грибах можно легко узнать грибы. Так образуется совершенно иной, более свободный тип симбиоза, в котором одно растение может одновременно союзничать со многими грибами, а один гриб – со многими растениями.
Чтобы отношения процветали, и растение, и гриб должны подходить друг другу в метаболическом плане. Это знакомое условие. В процессе фотосинтеза растения забирают углерод из атмосферы и создают углеводы и липиды, от которых зависит большая часть жизни. Развиваясь внутри корней растений, грибы получают привилегированный доступ к этим источникам энергии – питание. Однако для поддержания жизни одного фотосинтеза недостаточно. Растениям и грибам нужно нечто большее, чем источник энергии. Из почвы, наполненной волокнами и микропорами, полостями и лабиринтами гниющих растительных остатков, нужно добыть минеральные вещества. Грибы ловко находят дорогу в этих дебрях и могут добывать пищу так, как не могут растения. Приютив грибы в своих корнях, растения получают усовершенствованный «лаз» к источникам этих питательных веществ. Они тоже получают пищу. Заключив союз с грибом, растение получает грибной «протез», а гриб – растительный. Оба используют друг друга, чтобы расширить возможности. Это пример того, что Линн Маргулис нарекла «близостью незнакомцев». Только вряд ли их теперь можно назвать незнакомцами. Взгляните на корни, и вам все станет понятно. Под микроскопом корни превращаются в целые миры. Я на много недель погрузился в их изучение, иногда был увлечен, а иногда – разочарован. Опустите свежие тонкие корни в блюдо с водой, и вы увидите расползающиеся гифы. Прокипятите корни в красителе и расправьте на предметном стекле, и вы увидите переплетения. Грибные гифы раздваиваются и сливаются, взрываются внутри клеток растения буйством разветвляющихся нитей-отростков. Растение и гриб обнимаются и прижимаются друг к другу. Трудно вообразить более интимные позы.
Самое странное, что я когда-либо видел под микроскопом, – прорастающие семена-пылинки. Это самые мелкие семена на свете. Одно семечко можно рассмотреть невооруженным глазом – оно размером с кончик волоса или ресницы. Такие семена производят орхидеи и другие растения. Они почти ничего не весят и легко разносятся ветром и дождем. И они не прорастут, пока не встретятся с грибом. Я провел много времени, пытаясь поймать их за этим занятием. Я зарывал тысячи семян-пылинок в маленьких мешочках и откапывал их через несколько месяцев, надеясь, что какие-то из них дали ростки. Я передвигал их иглой по стеклянной чашке Петри, пытаясь рассмотреть под микроскопом хоть какие-то признаки жизни. Через несколько дней я нашел то, что искал. Некоторые семена набухли и превратились в толстые комочки, опутанные грибными гифами, расползавшимися по стеклу узкими длинными липкими лентами. Внутри развивающихся корней гифы спутывались в узлы и кольца. Это не было похоже на половые отношения: грибные клетки и клетки растения не слились и не объединили свою генетическую информацию. Но по сути это было ими: клетки двух разных существ встретились, объединились и начали сотрудничать ради новой жизни. Представлять будущее растение отделенным от гриба было бы абсурдом.
Неясно, как впервые возникли микоризные отношения. Некоторые решились предположить, что первые встречи были спонтанными и проходили во влажной обстановке: грибы разыскивали еду и пристанище внутри водорослей, выброшенных на грязные берега озер и рек. Другие, наоборот, предполагают, что водоросли прибыли на сушу уже со своими грибными партнерами. В любом случае, как объясняет Кейти Филд, профессор Лидского университета, «они вскоре стали зависеть друг от друга».
Филд – блестящий экспериментатор. Она годами изучает самые древние роды существующих сегодня растений. При помощи радиоактивных меченых атомов она оценивает обмен веществ между растениями и грибами в температурных камерах, имитирующих погодные условия древности. Их симбиотические манеры подсказывают, как растения и грибы вели себя по отношению друг к другу на самых ранних стадиях миграции на сушу. Окаменелости также позволяют узнать поразительные детали этих ранних союзов. Самые лучшие образцы относятся к эпохе примерно 400 миллионов лет назад и несут на себе следы неоспоримого присутствия в них грибов: пушистые комочки – точно такие же, какие мы наблюдаем сегодня. «Можно увидеть гриб, живший в клетках растений», – восхищалась Филд.
Самые первые растения были больше всего похожи на зеленые лужицы – без корней и других специализированных структур. Со временем у них появились грубые толстые органы, чтобы дать пристанище грибным помощникам, которые блуждали по почве в поисках питательных веществ и воды. Когда возникли первые корни, микоризным отношениям было уже примерно 50 миллионов лет. Микоризные грибы – это основа всех появившихся впоследствии форм жизни на Земле. Да и само слово «микориза» (mycorrhiza) указывает на это: корни (rhiza) появились вслед за грибами (mykes).
Сегодня, сотни миллионов лет эволюции спустя, у растений развились более тонкие, быстро растущие, гибкие и предприимчивые корни, которые ведут себя почти как грибы. Но корням не угнаться за ними, если дело касается исследования почвы. Гифы микоризных грибов в 50 раз тоньше самого тонкого корешка, и они могут превосходить корни в длину в 100 раз. Они появились до корней и проникают за их пределы. Некоторые исследователи идут еще дальше. «У растений нет корней, – признался один из моих преподавателей базового университетского курса озадаченным студентам. – У них есть грибы-корни – мико-ризы».
Микоризные грибы настолько плодовиты, что их мицелий составляет от трети до половины всей массы живого в почве. Цифры просто астрономические. По всей планете полная длина микоризных гиф в верхнем 10-сантиметровом слое почвы составляет примерно половину ширины нашей Галактики (4,5 × 10километров гиф против 9,5 × × 1017 17 километров космического пространства). Если бы гифы можно было бы разгладить в плоскую простыню, ею можно было бы два с половиной раза покрыть каждый клочок суши. Но гифы не задерживаются на одном месте. Микоризные гифы отмирают и вырастают заново так быстро – от 10 до 60 раз в год, – что за миллион лет их общая длина превзошла бы диаметр известной нам Вселенной (4,8 × 1010 световых лет гиф против 9,1 × 109 световых лет космоса). Учитывая, что микоризные грибы существуют уже около 500 миллионов лет и не ограничены верхним 10-сантиметровым слоем почвы, эти цифры сильно приуменьшены.
В союзе растений и грибов симбионты выполняют полярные функции: побеги растения «занимаются» светом и воздухом, а корни и грибы поглощены почвой. Растения упаковывают свет и углекислый газ, превращая их в углеводы и липиды. Микоризные грибы распаковывают питательные вещества, закупоренные в камнях и разлагающихся тканях. Это грибы, занимающие двойную нишу: часть их жизни проходит внутри растения, а часть – в почве. Они размещены у точки входа углерода в земные жизненные циклы и связывают атмосферу и Землю отношениями. До сего дня микоризные грибы помогают растениям справляться с засухами, жарой и многими другими стрессами, которым их с самого начала подвергает жизнь на суше. То же самое делают грибы, живущие в листьях и стеблях растений. То, что мы называем растениями, в действительности является грибами, которые в процессе эволюции научились выращивать водоросли, и водорослями, развившими способность выращивать грибы.

 

Микоризный гриб внутри корня растения

 

Слово «микориза» придумал в 1885 году немецкий биолог Альберт Франк – тот самый, чье увлечение лишайниками привело к созданию термина «симбиоз» за восемь лет до того. После этого он работал в Министерстве сельского хозяйства и лесных угодий королевства Пруссия, чтобы «создать условия для выращивания трюфелей». И эта работа заставила его вплотную заняться почвой. Как и для многих до него и после, трюфели оказались той приманкой, которая завела его в грибное подземное царство.
В разведении трюфелей Франк не преуспел, зато в живых подробностях описал запутанные отношения между древесными корнями и мицелием трюфельных грибов. Его рисунки и схемы изображают кончики корней, переплетающиеся внутри мицелиевого рукава, и гифы, выползающие, извиваясь, на лист бумаги. Франк был поражен интимностью этой связи и предположил, что отношения между корнями растений и их компаньонами-грибами, возможно, носят взаимовыгодный характер, а не паразитический. Как и было принято тогда среди ученых, занимавшихся симбиозом, чтобы разобраться в микоризных отношениях, в качестве основы он использовал лишайник. По мнению Франка, растения и микоризные грибы были связаны «тесной взаимной зависимостью». Микоризный мицелий выполнял роль «кормилицы» и поставлял «дереву полный комплекс питательных веществ из почвы».
Идеи Франка подверглись яростной критике, как в свое время и гипотеза двойственной природы лишайников Швенденера. Для противников теории Франка идея о том, что симбиоз может быть взаимно полезным – то есть называться мутуализмом, – была сентиментальной фантазией. Если кажется, что один из партнеров выигрывает от сожительства, он наверняка за это чем-то расплачивается. Любой симбиоз, представляющийся взаимовыгодным, только маскируется, «умалчивая» о конфликтах и паразитизме. Франк, на которого критика не оказала никакого влияния, продолжал работать над изучением отношений растений и их грибных «кормилиц» еще 10 лет. Он проводил изящные эксперименты с саженцами сосен. Некоторые из них он выращивал в стерилизованной почве; другие – в земле, принесенной из ближайшего соснового леса. Те саженцы, что росли в лесной почве, завязывали грибные отношения и развивались лучше, становясь здоровыми молодыми деревцами быстрее, чем саженцы, росшие в стерильных условиях.
Изыскания Франка привлекли внимание Дж. Р. Р. Толкина, чья любовь к растениям, особенно деревьям, была хорошо известна. Микоризные грибы вскоре стали персонажами «Властелина колец». «Для вас, маленький садовод и любитель деревьев, – сказала она [повелительница эльфов Галадриэль] Сэму [Гэмджи], – у меня лишь скромный подарок. <…> В ящике земля из моего сада и все благословения <…>. Если вы сохраните [мой подарок] и вновь увидите свой дом, тогда, быть может, он вознаградит вас. Пусть все будет уничтожено и пустынно, но мало найдется в Средиземье таких цветущих садов, какой будет у вас, если вы бросите на него эту землю». Когда он наконец вернулся домой в разоренный Шир, Сэм Гэмджи посадил саженцы в тех местах, где были когда-то самые красивые и любимые деревья, теперь уничтоженные, а под корень каждому из них положил по крупинке земли, подаренной волшебницей. Всю зиму он как мог сохранял спокойствие и старался не сбегать ежечасно в сад, чтобы проверить, не взошло ли там чего. Весна превзошла самые смелые его ожидания. Деревья пустили побеги и тянулись ввысь, словно время торопилось и стремилось за год создать то, на что обычно уходило 20 лет.
Описание Толкина вполне могло относиться к росту растений в девонский период, 300–400 миллионов лет назад. Уже вполне обосновавшиеся на земле, питаемые большим количеством света и углекислого газа растения расселились по всему миру и стали развиваться в более сложные и крупные формы быстрее, чем когда-либо ранее. Деревья в метр высотой превратились в 30-метровые за несколько миллионов лет. За этот период – по мере того, как росло благополучие растений, – содержание углекислого газа в атмосфере упало на 95 %, что спровоцировало начало периода глобального похолодания. Возможно ли, что растения и их партнеры грибы сыграли какую-либо роль в этом колоссальном атмосферном изменении? Ряд исследователей, включая и Филд, считают, что это вполне вероятно.
«Уровень углекислого газа в атмосфере сильно падает в то самое время, когда растения развиваются во все более сложные структуры», – объяснила Филд. Повышение продуктивности растений, в свою очередь, зависело от их микоризных партнеров. Такая последовательность событий вполне предсказуема. Один из самых серьезных факторов, ограничивающих рост растений, – недостаток фосфора. А уж что микоризные грибы делают лучше всего – это одна из их самых выдающихся метаболических «арий», – так это добывают фосфор из почвы и передают его партнерам-растениям. Если растения удобрены фосфором, они растут лучше и становятся больше. Чем больше растения, тем больше углекислого газа они забирают из атмосферы. Чем больше на земле растений, тем больше их умирает и больше углерода оказывается погребенным в почвенных отложениях. Чем больше углерода копится в почве, те меньше его остается в атмосфере.
Фосфор – лишь часть истории. Микоризные грибы применяют кислоту и высокое давление, чтобы прорывать ходы в твердых каменистых породах. С их помощью растения в девонский период добывали из почвы такие минералы, как кальций и кремний. Высвобожденные из камня, они вступают в реакцию с углекислым газом, извлекая его из атмосферы. Получающиеся в результате соединения – соли угольной и кремниевой кислоты – попадают в океаны, где морские организмы используют их для создания панцирей и раковин. Когда эти организмы умирают, их раковины и панцири погружаются на глубину и скапливаются на океанском дне, залегая слоями в сотни метров толщиной – тоже огромные хранилища углерода. Сложите все эти факторы, и климатические условия начнут меняться.
Интересно, можно ли высчитать, какое воздействие оказывали микоризные грибы на мировой климат в древности? – задался я вопросом. «И да, и нет, – ответила Филд. – Я попробовала недавно». Для этого она привлекла к работе биогеохимика Бенджамина Миллза из Университета Лидса. Он работает с прогностическими компьютерными моделями, описывающими изменения климата и состава атмосферы. Компьютерные модели строят многие исследователи. Метеорологи и климатологи нуждаются в этих цифровых симуляциях для создания сценариев развития. От моделей также зависят исследователи, воссоздающие перемены в прошлом планеты. Подставляя числа, можно опробовать различные гипотезы изменения климата Земли. Увеличим содержание углекислого газа, и к чему это приведет? А если снизить количество фосфора, которое доступно растениям? Модели не могут точно сказать, что происходило, но они могут указать на факторы, способные вызвать изменения.
До того, как Филд обратилась к Миллзу, он не включал микоризные грибы в свои расчетные модели. Миллз мог изменить количество получаемого растениями фосфора, но, если не принимать в расчет микоризные грибы, невозможно сделать реалистичный расчет фосфора, доступного растениям. Филд могла помочь. Проведя ряд экспериментов в климатических камерах, она выяснила, что результат микоризных отношений варьировался в зависимости от климатических условий. Иногда растения больше выигрывали от этих отношений, иногда – меньше. Эту особенность она назвала симбиотической эффективностью. Если растения объединяются с эффективным микоризным партнером, они получают больше фосфора и лучше растут. Филд удалось примерно рассчитать, насколько эффективным должен был быть микоризный обмен около 450 миллионов лет назад, когда уровень содержания углекислого газа в атмосфере был в несколько раз выше, чем сегодня.
Когда Миллз добавил микоризные грибы в модель, использовав вычисления Филд, он обнаружил, что изменить климат на планете можно было, просто повысив или понизив симбиотическую эффективность. Количество углекислого газа и кислорода в атмосфере, а также температура – все менялось в зависимости от эффективности обмена веществами. В соответствии с данными Филд микоризные грибы могли внести существенный вклад в кардинальное снижение уровня углекислого газа, которое последовало за процветанием растений в девонский период. «Это один из тех моментов, когда вы думаете: “Ух ты! И правда!” – воскликнула Филд. – Наши результаты предполагают, что микоризные отношения сыграли роль в эволюции большей части жизни на Земле».
И они продолжают ее играть. В книге пророка Исаии Ветхого Завета сказано, что «всякая плоть – трава». Это утверждение вполне научно: в телах животных трава становится плотью. Однако зачем на этом останавливаться? Трава становится травой, если ее поддерживают грибы, живущие в ее корнях. Значит ли это, что вся трава – это гриб? Если вся трава – гриб и вся плоть – трава, следует ли из этого, что вся плоть – это гриб? Может быть, и не вся, но часть – точно. Микоризные грибы могут обеспечивать растениям до 80 % азота и до 100 % фосфора. Грибы поставляют им и другие необходимые питательные вещества, такие как цинк и медь. Они также обеспечивают растения водой и помогают им пережить засуху, что делали с незапамятных времен, с первых дней существования жизни. Взамен растения отдают своим микоризным партнерам вплоть до 30 % углерода, который добывают. Что именно происходит между растением и микоризным грибом в конкретный момент, зависит от того, кто участвует в отношениях. Быть растением и быть грибом можно по-разному. И по-разному могут складываться микоризные отношения: это образ жизни, который заново формировался в процессе эволюции более 60 раз в различных грибных родах, с тех пор как водоросли впервые выбрались на сушу. Как и в случае со многими характерными свойствами, возникавшими вопреки обстоятельствам не один раз – будь то способность охотиться на червей-нематод, или образовывать лишайники, или манипулировать поведением живых существ, – трудно отделаться от чувства, что эти грибы натолкнулись на стратегию, ведущую к победе.
Грибные партнеры растения могут оказать заметное воздействие на его рост – и на его плоть. Несколько лет назад, на конференции, посвященной микоризным отношениям, я встретил одного исследователя, который выращивал клубнику с разными микоризными грибами. Эксперимент был прост. Если один и тот же сорт клубники выращивать с различными видами грибов, изменится ли вкус клубники? Он проводил дегустацию вслепую и выяснил, что разные сообщества микоризных грибов действительно меняли вкусовые свойства ягод. У некоторых из них вкус становился насыщеннее, другие делались более сочными, а третьи – более сладкими. Когда он повторил эксперимент на второй год, непредсказуемые погодные условия затушевали воздействие микоризных грибов на вкус клубники, но обнаружился ряд других поразительных эффектов. Шмелей больше привлекали цветы на клубничных кустах, выросших с одним видом микоризных грибов, и меньше – те, что выросли с другими видами. Растения, выращенные с некоторыми видами грибов, давали больше ягод, чем выращенные с другими видами. Внешний вид ягод тоже менялся в зависимости от того, с каким видом гриба состояло в партнерстве растение. Некоторые грибные сообщества придавали ягодам более приятный вид, чем другие.
Не только клубника чувствительна к личности своего грибного партнера. Большинство растений – от декоративного горшечного львиного зева до гигантской секвойи – будут по-разному развиваться в зависимости от того, с каким сообществом микоризных грибов сотрудничают. У базилика, например, меняются оттенки ароматических масел, определяющих его вкус, в зависимости от обитающего в корнях гриба. Обнаружили, что благодаря некоторым грибам помидоры становятся слаще; другие меняют основные свойства масел фенхеля, кориандра и мяты; третьи увеличивают концентрацию железа и каротиноидов в листьях салата, антиоксидантные свойства артишока или концентрацию лекарственных соединений в зверобое и эхинацее. В 2013 году группа итальянских ученых выпекла буханки хлеба из муки, пшеница для которой выращивалась с разными микоризными сообществами. В дегустации хлеба участвовали «электронный нос» и комиссия, составленная из 10 «хорошо обученных дегустаторов», прошедших профессиональную подготовку в Университете гастрономических наук в Бра, Италия. (Каждый дегустатор, как заверяли авторы эксперимента, «имел по крайней мере два года опыта в сенсорной/органолептической оценке».) Удивительно, учитывая количество промежуточных стадий между уборкой урожая зерна и дегустацией (помол, вымешивание и выпекание, не говоря уже о добавлении дрожжей), – но и комиссия, и «электронный нос» смогли почувствовать разницу между буханками хлеба. Хлеб, выращенный с усиленным сообществом микоризных грибов, обладал «ярче выраженным вкусом» и лучшей «эластичностью и рассыпчатостью». Нюхая цветок, пробуя на вкус сучки, листья или кору, выпивая какое-нибудь вино, сколько еще проявлений подземного микоризного влияния на растения мы смогли бы почувствовать? Я часто задаю себе этот вопрос.

 

Кончик корня с микоризой

 

«Насколько тонким должен быть механизм, регулирующий и поддерживающий равновесие между населяющими почву организмами», – размышляла миколог Мейбл Рейнер в своей книге о микоризных отношениях «Деревья и поганки» (Trees and Toadstools), опубликованной в 1945 году. Разные виды микоризных грибов могут изменить вкус листа базилика или сделать ягоды клубники более привлекательными на вид. Но каким образом? Неужели одни грибы являются лучшими партнерами, чем другие? Могут ли растения и грибы отличать одних партнеров от других? Со времен публикации Рейнер прошли десятилетия, а мы только начинаем разбираться в тонкостях поведения, которые поддерживают симбиотический баланс между растениями и микоризными грибами.
Общение требует много усилий. Некоторые эволюционные психологи уверены, что большой мозг и гибкий интеллект развились у людей, именно чтобы помочь нам сориентироваться в сложных социальных ситуациях. Даже самое незначительное взаимодействие встроено в постоянно изменяющееся социальное созвездие. В соответствии с этимологическим словарем Чемберса (Chambers Dictionary of Etymology) английское слово entangle («запутывать») изначально использовалось для описания запутанных социальных взаимодействий или вовлеченности в «сложные отношения». Только позже это слово приобрело другие значения. Мы, люди, стали такими умными – аргументируют ученые, – потому что постоянно оказывались впутанными в шквал жестких взаимодействий.
У растений и микоризных грибов нет ярко выраженного мозга или интеллекта, но жизнь они действительно ведут запутанную, и им пришлось найти способы управлять своими сложными отношениями. Действия растений объясняют, что происходит в мире восприятия их грибных партнеров. Подобным же образом поведение грибов зиждится на том, что творится в восприятии партнеров-растений. Используя информацию, поступающую от 15–20 различных анализаторов, побеги и листья растения исследуют воздух и регулируют свое поведение в соответствии с постоянными, но почти незаметными изменениями в окружающей их среде. От тысяч до миллиардов корешков исследуют почву, и каждый из них способен завязать многочисленные связи с различными видами грибов. Тем временем микоризный гриб должен вынюхивать и отыскивать источники питательных веществ, разрастаться внутри их, смешиваться с толпой других микроорганизмов – грибков ли, бактерий или каких-то других, – впитывать питательные вещества и направлять их по хаотично извивающейся сети своего тела. Информация должна быть внедрена в огромное количество отростков гиф, которые в любой отдельно взятый момент могут быть вытянуты между несколькими различными растениями и простираться более чем на десятки метров.
Тоби Кирс, профессор Амстердамского свободного университета, – одна из исследователей, что больше всех сделали, чтобы выяснить, как растения и грибы поддерживают баланс. Используя радиоактивные метки, сотрудники ее группы способны отследить движение углерода от корней растений в грибные гифы и перемещение фосфора от грибов в корни растения. Тщательно измеряя эти потоки, она смогла описать некоторые способы управления обменом веществ со стороны обоих партнеров. Я спросил у Кирс о том, как растения и микоризные грибы ориентируются в очень требовательных и сложных социальных ландшафтах. Она рассмеялась: «Мы и вправду хотим досконально изучить сложность того, что происходит. Мы знаем, что идет обмен. Вопрос в том, сможем ли мы прогнозировать, как будут меняться его стратегии. Сложность задачи кажется непреодолимой, но почему бы не попробовать?»
Результаты Кирс удивительны, потому как предполагают, что ни растение, ни гриб не контролируют полностью свои взаимоотношения. Они могут приходить к компромиссным решениям, совершать сделки, применять изощренные торговые стратегии. В одной серии экспериментов она выяснила, что корни растений могут отдавать предпочтение – то есть снабжать большим количеством углерода – тем разновидностям грибов, которые поставляют им больше фосфора. В свою очередь грибы, получающие больше углерода от растений, увеличивают поставки фосфора. Обмен стал в некотором смысле результатом договора между сторонами, нуждавшимися в ресурсах. Кирс выдвинула гипотезу, что «взаимовыгодность» помогала сохранять стабильность отношений между растениями и грибами на протяжении эволюции. Так как оба партнера вместе контролируют обмен веществами, ни один из них не сможет узурпировать эти отношения исключительно для своей пользы.
Хотя и растения, и грибы в общем и целом имеют тенденцию выигрывать от своих взаимоотношений, симбиотическая манера поведения у разных видов грибов и растений разная. Из некоторых грибов получаются более приятные партнеры, из других – менее сговорчивые: вместо того чтобы обмениваться фосфором со своим партнером-растением, они запасают и накапливают его. Однако даже грибы-накопители могут иногда прекращать запасать фосфор. У них гибкая модель поведения – ряд непрекращающихся переговоров и сделок, зависящих от того, что происходит вокруг них и в других частях их системы. Мы немного знаем о том, как конкретно строится их поведение, но очевидно, что в любой конкретный момент у растений и грибов есть целый ряд возможностей. А возможности означают выбор, как бы этот выбор ни делался – в уме человека, внутри бессознательного компьютерного алгоритма или чего-то между ними.
Принимают ли грибы и растения решения, пусть мозг и не участвует в этом? – задавал я себе вопрос. «Я все время пользуюсь словом “решение”, – сказала мне Кирс. – Существует несколько опций, и информация каким-то образом должна быть интегрирована, и одна из опций должна быть выбрана. Я думаю, что по большей части мы изучаем микрорешения». Выбор может происходить по-разному, по множеству сценариев. «Принимаются ли в каждом ответвлении гифы абсолютные, самостоятельные решения? – размышляла Кирс. – Или все это относительно? В таком случае то, что происходит, зависит, вероятно, от того, что еще творится в сети».
Заинтригованная этими вопросами, Кирс прочла работу Томаса Пикетти о неравномерном распределении материальных благ в человеческих обществах и стала думать о роли неравенства в грибных сетях. Она и ее команда предоставили одному и тому же микоризному грибу неравные запасы фосфора. У одной части мицелиевой сети был доступ к обильному источнику фосфора; другой части достались небольшие залежи. Ей хотелось посмотреть, как это повлияет на «торговые» решения гриба в разных частях. Возникло несколько вполне узнаваемых схем. В той части, где фосфора не хватало, растение платило более «высокую цену», поставляя грибу больше углерода за каждую полученную порцию фосфора. Там, где фосфора было в достатке, гриб получал углерод по менее выгодному «обменному курсу». Цена фосфора, казалось, регулировалась знакомой динамикой спроса и предложения.
Чрезвычайно удивительным было то, как гриб координировал свое «торговое» поведение по всей сети. Кирс опознала стратегию «купить дешевле, продать дороже». Гриб активно транспортировал фосфор – используя свои динамические микроканалы – из частей сети, где он был в изобилии и где шел по низкой цене, при обмене с корнем растения в области дефицита, где спрос на него был выше и цена лучше. Благодаря этим перемещениям гриб мог переводить растению большую часть своего фосфора по более выгодному обменному курсу, таким образом получая больше углерода в ответ.
Как контролируются эти действия? Способен ли гриб выявить разницу в курсе обмена по всей своей сети и активно транспортировать фосфор, чтобы система работала? Или он всегда перемещает фосфор по сети из мест, где его много, в места, где его не хватает, иногда получая вознаграждение от растения, а иногда нет? Мы все еще не знаем этого. Тем не менее работа Кирс проливает свет на некоторые тонкости обмена между растением и грибом и демонстрирует, как рождаются решения сложных задач. Такое поведение иллюстрирует общую тенденцию. Как конкретный гриб или конкретное растение ведет себя, зависит от того, кто их партнер и где они находятся. Вообразите себе микоризные отношения растянутыми в пространственно-временном континууме: на одном полюсе находятся паразитирующие особи, а на другом – готовые к сотрудничеству мутуалисты. Некоторые растения выигрывают от сотрудничества со своими грибами-партнерами только при определенных условиях. Вырастите растения с большим количеством фосфора, и, возможно, они станут не так разборчивы в выборе грибного партнера. Вырастите готовые к сотрудничеству грибы рядом с другими такими же, и они могут стать менее сговорчивыми. Один и тот же гриб, одно и то же растение в разных условиях и разном окружении – результаты разные.
Один из моих коллег, профессор в Университете Марбурга, рассказал мне о скульптуре, которую видел ребенком. «Вертикальный километр» – это бронзовый шест длиной в километр, зарытый в землю. Единственная видимая часть этой скульптуры – самый ее конец – бронзовый кружок на полу, который выглядит как монета. Он описывал вызванное воображением головокружение, ощущение, что он плавает на поверхности океана, заглядывая в его глубины. Это событие стало истоком его увлечения корнями и микоризными грибами – на всю жизнь. Я испытываю такое же головокружение, когда думаю о сложности микоризных отношений – километрах запутанной жизни, теснящейся под моими ногами.
Голова по-настоящему начинает идти кругом, когда я пытаюсь представить себе все в масштабе от очень маленького до очень большого, от микроскопических «торговых» решений, происходящих на клеточном уровне, до всей планеты, атмосферы, трех с чем-то триллионов деревьев, живущих и растущих на Земле, и квадриллионах километров микоризных грибов, вплетающих их в свои отношения с почвой. Наш разум плохо удерживает равновесие, сталкиваясь с такими огромными числами. И все же история микоризных отношений совершает множество подобных головокружительных прыжков – от очень большого к очень маленькому и обратно.
Масштаб – серьезный вопрос в области грибных исследований. Микоризные отношения скрыты от глаз. Их сложно ощутить, увидеть или коснуться. Их недосягаемость означает, что больше всего информации о микоризном поведении приходит из исследований, проводимых в контролируемых условиях лабораторий или теплиц. Масштабирование полученных in vitro результатов до реальных экосистем не всегда возможно. Чаще всего мы видим лишь крохотную часть общей картины. В результате ученые знают больше о том, на что способны микоризные грибы, чем о том, чем они действительно занимаются. Даже в контролируемых условиях трудно получить представление о поведении грибов в ту или иную минуту.
Противовес работе Кирс составляют ситуации, в которых обмен веществами между грибами и растениями не подчиняется разумным торговым стратегиям. Быть может, в нашей картине чего-то недостает? Никто не может сказать с уверенностью. Мы очень слабо представляем, как по правде происходит обмен и как он контролируется на клеточном уровне. «Мы стремимся изучить, как материя перемещается по сети, – сказала мне Кирс. – Мы пытаемся записать об этом видео. Там творится что-то безумное. Эта работа очень сложна. Я не удивлена, что люди предпочитают работать с другими организмами». Многие микологи разделяют это смешанное чувство волнения и отчаяния.
Существует ли другой способ осмыслить эти альянсы, остановить головокружение? Некоторые из моих коллег интуитивно находят выход микоризному энтузиазму. Некоторые из них страстные грибники. Разыскивая грибы – трюфели, белые, лисички и мацутаке, – они спонтанно включаются в микоризные отношения. Другие часами изучают микоризные грибы под микроскопом – это примерно то же, что погружение биолога океана в морские глубины. Третьи часами просеивают почву в поисках микоризных спор – разноцветных шариков, под микроскопом блестящих, как рыбья икра. Один из моих коллег в Панаме был опытным охотником за спорами. Иногда вечерами мы готовили закуску из спор, кусочков крекера и сметаны: малюсенькие крошки микоризной икры, которую приходилось готовить под микроскопом и пинцетом отправлять в рот. Нового мы узнавали мало, да это и не было целью. Это было упражнение по сохранению равновесия: мы уходили в крен, двигаясь от малого к большому. Это были редкие моменты прямого, без посредников, контакта с исследуемыми в эксперименте субъектами. Это были приятные глупости, чтобы напомнить нам, что микоризные грибы – не механизмы, не схематические величины (нельзя же съесть механизм или концепцию), а живые организмы, участвующие в жизненных процессах, которые мы все еще силимся понять.
Растения остаются самым простым способом заглянуть внутрь. Именно через растения подземная микоризная феерия чаще всего врывается в повседневную человеческую жизнь. Бесчисленные микроскопические взаимодействия, которые происходят между корнями и грибами, находят свое выражение в формах, росте, вкусе и запахе растений. Сэм Гэмджи, как и Альберт Франк, мог наблюдать результат микоризных отношений молодых деревьев своими собственными глазами: деревца «начинали давать побеги и тянуться вверх, словно время спешило вперед». Вы съедаете растение – и пробуете на вкус плод микоризных отношений. Выращиваете растения – в горшке, на клумбе, в саду или городском парке, – и культивируете микоризные отношения. Увеличьте масштаб, и микроскопические торговые сделки, заключаемые растениями и грибами, выльются в лесные популяции на всех континентах. Последний ледниковый период окончился примерно 11 000 лет назад. Когда сошел гигантский Лаврентийский ледниковый щит, обнажились миллионы квадратных километров Северной Америки. За несколько тысяч лет леса разрослись в северном направлении. Проводя анализ пыльцы, можно восстановить хронологию миграции разных видов деревьев. Некоторые из них – бук, ольха, сосна, ель и клен – двигались быстро, перемещаясь в год более чем на 100 метров. Другие – платан, дуб, береза и гикори (кария) – медленнее, покрывая около 10 метров в год.
Что же в этих различных видах деревьев определяло их реакцию на изменяющиеся климатические условия? Взаимодействие грибов и предков растений позволило им мигрировать на сушу. Могли ли микоризные отношения продолжать играть какую-либо роль в перемещении растений по планете миллионы лет спустя? Вполне возможно. Ни растения, ни грибы не переходят друг к другу по наследству. Они наследуют склонность к созданию связи, но они «проповедуют» то, что, по меркам многих других древних симбиозов, является открытыми, свободными отношениями. Как и в самые первые дни жизни на суше, растения вступают в союзы исходя из того, кто находится рядом с ними. То же самое можно сказать и о грибах. Хотя это можно считать недостатком – семя растения, не обнаружившее совместимый с ним гриб, вряд ли выживет, – способность перестраивать отношения или строить новые может дать возможность партнерам своевременно реагировать на изменение условий. Работа, опубликованная в 2018 году исследователями Университета Британской Колумбии, предполагает, что скорость миграции деревьев действительно могла зависеть от их склонности к микоризным связям. Некоторые виды деревьев ведут более свободный образ жизни и способны завязывать отношения со многими видами грибов. Когда сошел Лаврентийский ледяной щит, виды деревьев, более свободные в выборе партнеров, мигрировали быстрее, и у них было больше шансов встретить подходящий гриб, когда они оказывались в новом месте.
Грибы, обитающие в листьях и побегах растений – известные как эндофиты, – могут иметь такое же важное влияние на способность растения приживаться на новом месте. Возьмите траву с морских прибрежных соленых почв и вырастите ее без грибковых эндофитов – она не выживет в своей родной соленой среде обитания. То же самое происходит и с травами, растущими в горячих грунтах вокруг геотермальных источников. Ученые, авторы упомянутой работы, поменяли местами грибы-эндофиты, жившие в каждом виде трав: травы с морского побережья выращивались с грибами трав, растущих на геотермальных почвах, и наоборот. Изменилась на противоположную и способность трав выживать в определенных средах. Травы побережья больше не могли расти в соленых прибрежных почвах, зато процветали в горячих геотермальных грунтах. Травы из геотермальных почв не могли в них выжить, зато прекрасно развивались в соленых почвах морского побережья.
Грибы могут определить, где будет расти то или иное растение; они даже могут стимулировать развитие нового вида, изолируя популяции растений друг от друга. Остров Лорд-Хау в длину вытянут на девять километров, а в ширину – примерно на километр, и расположен он между Австралией и Новой Зеландией. На нем растут два вида пальм, произошедшие от одного и того же предка. Один вид, ховея Белмора, Howea belmoreana, растет на закисленных вулканических почвах, в то время как ее сестра, ховея Форстера, живет на щелочных меловых почвах. Для ботаников долго оставалось загадкой, отчего ховеи так разошлись географически. Статья, опубликованная в 2017 году исследователями Имперского колледжа Лондона, объясняет, что большую часть ответственности за это несут микоризные грибы. Британские ученые обнаружили, что эти два вида пальм поддерживают отношения с двумя разными грибными общностями. Ховея Форстера способна образовывать связь с микоризными грибами, которые дают ей возможность расти в щелочной песчаной почве. Однако по этой причине ей сложно завязывать отношения с грибами, обитающими в родной для ее предков вулканической почве. Это значит, что эта пальма выигрывает только от союза с грибами, присутствующими в песчаной почве, тогда как благополучие ховеи Белмора зависит только от грибов – обитеталей вулканической почвы. Со временем один вид пальм разделился на два расселившихся по двум микоризным островам, оставаясь на одном острове на карте мира.
Способность микоризных грибов и растений перестраивать свои отношения имеет глубокие последствия. Нам знаком этот предмет: в течение всей истории человечества партнерство с другими организмами расширяло возможности как человека, так и другого участника такого союза. Человеческие отношения с зерновыми привели к появлению новых форм цивилизации. Взаимоотношения с лошадьми привели к появлению новых видов транспорта. Взаимоотношения с дрожжевыми грибами – к новым видам алкогольной продукции и ее распространению. В каждом случае возможности и человека, и его партнеров, не принадлежавших к человеческому миру, определялись по-новому.
Люди и лошади остаются отдельными организмами, как растения и микоризные грибы, но и те и другие отражают тенденцию живого к созданию связей. Антропологи Наташа Майерс и Карла Хустак утверждают, что слово «эволюция», которое в буквальном переводе означает «вращаться наружу», не передает готовности организмов ко взаимному участию в жизни друг друга. Майерс и Хустак считают, что неологизм «инволюция» – от слова «вовлекать» – лучше описывает это свойство – «вращаться, катиться, заворачиваться внутрь». С их точки зрения, концепция вовлеченности лучше описывает, как организмы беспорядочно тянут и толкаются, «постоянно изобретая новые способы ужиться друг с другом». Именно стремление вмешиваться в жизнь других позволило растениям позаимствовать корневую систему на 50 миллионов лет, пока они не создали собственную. Сегодня, когда у всех есть корни, почти все растения нуждаются в грибе – дирижере их подземной жизни. Грибы благодаря вовлеченности в жизнь других смогли устроить свои атмосферные дела за счет фотосинтезирующих водорослей. И они пользуются ими. Растения и грибы должны постоянно строить и перестраивать свои отношения. «Инволюция» постоянна и беспредельна: устанавливая связь друг с другом, все участники выходят за пределы прежних границ.
Сталкиваясь с катастрофическим изменением окружающей среды, большая часть живого начинает зависеть от способности растений и грибов приспосабливаться к новым условиям, будь то загрязненные, обеслесенные ландшафты или рукотворные среды, такие как озелененные крыши в городах. Повышение содержания углекислого газа в атмосфере и сопряженное с ним изменение климата влияют на микроскопические торговые сделки между корнями растений и грибами. Влияние условий этих сделок давно уже увеличивается в масштабе и выплескивается на целые экосистемы, целые природные массивы. В солидном труде, изданном в 2018 году, выдвигалось предположение, что «пугающее ухудшение» здоровья деревьев по всей Европе было вызвано нарушением их микоризных отношений, причиной которого стало азотное загрязнение. Микоризные связи, зародившиеся в антропоцене, определяют большую часть человеческой способности адаптироваться к резкой деградации среды. Нигде эти возможности – и ошибки – не заметны так, как в сельском хозяйстве. «От эффективности микоризной связи будет зависеть благосостояние и здоровье всего человечества», – писал Альберт Говард, основатель современного движения органического земледелия и страстный защитник микоризных грибов. В 1940-х годах Говард утверждал, что широко распространенное применение химических удобрений непременно нарушит микоризные связи, посредством которых «возникает <…> союз плодородной почвы и дерева, которое она питает». Последствия этого нарушения будут сказываться очень долго. Перерезать эти «живые грибные нити» означает ухудшить здоровье почвы. В свою очередь обязательно пострадают здоровье и урожайность посевов, как и люди и животные, питающиеся ими. «Способно ли человечество управлять своими делами так, чтобы его главное достояние – плодородность почвы – было сохранено? – взывал Говард. – От ответа на этот вопрос зависит будущее человеческой цивилизации».
Тон Говарда патетичен, и 80 лет спустя его вопросы затрагивают суть. В какой-то степени современное промышленное земледелие вполне успешно: за вторую половину XX века урожайность зерновых удвоилась. Но сосредоточенность на повышении производительности и прибыли привела к резкому увеличению себестоимости и расходов. Промышленное земледелие стало причиной широкомасштабного разорения окружающей среды и попадания в атмосферу четверти мирового объема парниковых газов. От 20 до 40 % урожая ежегодно пропадает из-за болезней и вредителей, несмотря на колоссальные объемы пестицидов. Урожайность в мировом масштабе перестала расти, несмотря на 700-кратное увеличение объема удобрений за вторую половину XX века. Ежеминутно во всем мире из-за эрозии уничтожается верхний плодородный слой почвы площадью 30 футбольных полей. И все же треть продуктов питания выбрасывается, а спрос на урожаи зерновых должен удвоиться к 2050 году. Необходимость срочно принимать меры для борьбы с этим кризисом переоценить сложно.
Могли бы микоризные грибы отчасти решить проблему? Вероятно, это глупый вопрос. Микоризные отношения – ровесники растений, они формируют будущее Земли уже сотни миллионов лет. Они всегда были рядом, когда мы возделывали посевы, и неважно, знали ли мы о них или нет. Тысячелетиями во многих частях света традиционное сельское хозяйство поддерживало здоровье почвы, тем самым опосредованно сохраняя отношения между растениями и микоризными грибами. Но за последние 100 лет наше небрежение привело к беде. В 1940 году Говарда больше всего тревожило то, что технологии промышленного сельского хозяйства не будут учитывать «жизнь в почве». Его опасения подтвердились. Рассматривая почву как нечто безжизненное, сельскохозяйственная деятельность разорила подземные сообщества, дающие вкус и пользу тому, что мы едим. Можно провести аналогию с медицинской наукой XX века, для которой микробы и болезнетворные бактерии были одним и тем же. Конечно, некоторые жители почвы, как и некоторые микробы нашего тела, могут вызывать недуги. Но большинство из них делают как раз обратное. Навредите микробному сообществу вашего кишечника, и ваше здоровье пострадает: возникает все больше болезней, вызванных попытками избавиться от «бактерий». Нарушьте экологическое равновесие в разноперой колонии микробов в почве – кишечнике планеты, – и здоровью растений тоже будет нанесен ущерб.
В исследовании, опубликованном в 2019 году учеными из «Агроскопа» (Agroscope) в Цюрихе, измерили масштаб урона и сравнили воздействие на грибные сообщества в корнях сельскохозяйственных культур органического (экстенсивного) и традиционного (интенсивного) земледелия. Секвенируя ДНК грибов, авторы смогли обозначить границы систем, в рамках которых взаимодествовали разные виды грибовы. Они обнаружили «заметные различия» между полями органических сельских угодий и традиционных. Там, где использовали принципы органического земледелия, микоризных сообществ не только было намного больше, но и сами грибные связи и сообщества были намного сложнее: исследователям удалось идентифицировать 27 тесно переплетенных и взаимосвязанных видов грибов, или «ключевых видов». В почве полей, где земледелие велось традиционным, интенсивным образом, не было обнаружено ни одного грибного сообщества. Во многих работах приводятся аналогичные результаты. Интенсивное земледелие, подразумевающее вспахивание и применение химических удобрений или фунгицидов, сильно сокращает количество микоризных грибов и изменяет структуру их сообществ. Земледелие более бережное – органическое или какое-либо другое – повышает разнообразие микоризных сообществ и объем грибного мицелия в почве.
Важно ли это? Большая часть истории сельского хозяйства – это история экологических жертв во имя урожая. Леса вырубаются, чтобы освободить место под пашни. Живые изгороди уничтожаются, чтобы поля становились больше. И то же самое происходит с сообществами микроорганизмов в почве. Если люди удобряют посевы при помощи химикатов, не отнимаем ли мы работу у микоризных грибов? Зачем беспокоиться о грибах, если мы «уволили» их, отказались от их обязанностей?
Микоризные грибы не только кормят растения. Ученые в «Агроскопе» описывают их как «ключевые организмы», но многие предпочитают термин «инженеры экосистем». Микоризный мицелий – это живой липкий шов, соединяющий почву воедино; уберите грибы, и землю начнет вымывать. Микоризные грибы увеличивают объем воды, который может впитать почва, сокращая на целых 50 % количество вымываемых дождями питательных веществ. Из всего углерода в почве – а его там в два раза больше, чем в растениях и в атмосфере, вместе взятых, – существенная часть заключена в твердых органических соединениях, производимых микоризными грибами. Поток углерода, попадающий в почву по микоризным каналам, поддерживает сложные пищевые сети. Помимо сотен или тысяч метров мицелия в чайной ложке здоровой почвы, там находится больше бактерий, простейших, насекомых и членистоногих, чем всех людей, когда-либо живших на планете Земля.
Микоризные грибы могут улучшить качество урожая, как демонстрировали эксперименты с базиликом, клубникой, помидорами и пшеницей. Они также могут усилить способность посевов соперничать с сорняками и увеличить их сопротивляемость болезням, подготавливая и укрепляя иммунную систему растений. Они могут сделать посевы менее уязвимыми перед засухой и жарой и более устойчивыми к засоленности почвы и тяжелым металлам. Они даже усиливают способность растений отбивать нападения насекомых-паразитов, стимулируя выработку защитных химических веществ. Список можно продолжать и дальше: в литературе полным-полно примеров тех преимуществ, которыми микоризные отношения обеспечивают растения. Однако применять эти знания на практике не всегда просто. Во-первых, микоризные связи не всегда увеличивают урожайность посевов. В некоторых случаях они могут даже ухудшить ее.
Кейти Филд одна из многих исследователей, работа которой финасируется ради микоризных решений сельскохозяйственных проблем. «Эти взаимоотношения куда более пластичны и ориентированы на среду, чем мы предполагали, – сказала она мне. – Очень часто грибы не помогают растениям поглощать питательные вещества. Результаты в высшей степени непостоянны. Все зависит от типа гриба, типа растения и среды, в которой оно растет». Ряд исследователей сообщают о таких же непредсказуемых результатах. Большинство разновидностей современных культурных растений выведены без оглядки на их способность образовывать продуктивные микоризные связи. Мы вывели сорта пшеницы, растущие быстро, когда их подкармливают большим количеством удобрений, и в результате получили «избалованные» растения, почти утратившие способность сотрудничать с грибами. «То, что грибы вообще устраивают свои колонии в корнях таких злаков, – это маленькое чудо», – заметила Филд.
Тонкости микоризных отношений означают, что самая простая и очевидная мера, то есть внесение в корневую систему растений микоризных грибов и других микроорганизмов, может привести как к положительному, так и к отрицательному результату. Иногда, как мог убедиться Сэм Гэмджи, знакомство растений с колониями почвенных микроорганизмов может поддержать рост посевов и деревьев и помочь восстановить жизнь на опустошенных землях. Однако успех такого подхода зависит от экологической совместимости. Плохо подходящие для растений микоризные виды могут причинить им больше вреда, чем пользы. Что еще хуже, внедрение предприимчивых грибных видов в новую среду может привести к вытеснению местных грибных сообществ с непредсказуемыми экологическими последствиями. Это не всегда учитывается быстро развивающейся «микоризной» индустрией: подкормка такого рода часто преподносится как универсальное и быстродействующее средство. Как в случае стремительно растущего рынка пробиотиков для людей, многие микробные штаммы выбирают для продажи не потому, что они наиболее «полезны», а потому, что их легко производить в промышленных условиях. Даже если все продумано, внедрение в среду различных микроорганизмов может улучшить ситуацию лишь до определенного предела. Как и любому организму, микоризным грибам нужно обеспечить условия для процветания. Почвенные микробные сообщества живут «на чемоданах» и вместе оставаться долго не будут, если ход их жизни постоянно нарушается. Чтобы внедрение микроорганизмов было эффективно, требуется коренная перестройка сельского хозяйства, аналогичные изменениям в рационе и образе жизни, на которые мы пошли бы ради блага поврежденной кишечной флоры.
Другие исследователи смотрят на проблему с другого угла. Если люди по недомыслию вывели сорта зерновых, образующие непродуктивные симбиотические связи с грибами, мы наверняка можем сделать обратное и вывести зерновые, которые станут эффективными симбиотическими партнерами. Филд развивает именно это направление и надеется создать готовые к сотрудничеству разновидности растений – «новое поколение суперзерновых, которые смогут создавать потрясающие союзы с грибами». Кирс также интересуется такими возможностями, но занимает позицию грибов. Вместо того чтобы выводить более склонные к кооперации растения, она работает над созданием грибов, которые бы вели себя более альтруистично: штаммы, которые будут меньше запасать питательных веществ для себя и, возможно, даже больше заботиться о потребностях растений, чем о своих собственных.
В 1940 году Говард пророчески утверждал, что у нас нет «окончательного научного объяснения» для микоризных отношений. Толкования остаются по-прежнему далеко не полными, однако перспективы работы с микоризными грибами для преобразования сельского и лесного хозяйства и восстановления окружающей среды становятся все радужнее по мере усугубления экологического кризиса. Микоризные отношения возникли для преодоления жестких условий жизни на пустынной и продуваемой всеми ветрами планете в первые дни жизни на суше. Вместе растения и грибы создали некий принцип ведения сельского хозяйства, хотя сказать, кто кого научился выращивать – грибы растения или растения грибы, – практически невозможно. Как бы там ни было, мы стоим перед необходимостью изменить свое поведение, чтобы грибы и растения могли культивировать друг друга. Вряд ли мы продвинемся далеко вперед, если не пересмотрим некоторые из привычных категорий. Представление о растениях как о независимых индивидуумах с четко очерченными границами ведет к беде. «Давайте рассмотрим слепого с тростью, – писал теоретик Грегори Бейтсон. – Где начинается индивидуальность слепого? На конце трости? На рукояти? Или где-то посередине?»
Философ Морис Мерло-Понти 30 годами ранее использовал такой же мысленный эксперимент. Он пришел к выводу, что трость человека перестала быть просто предметом. Трость расширяет его ощущения и становится частью его сенсорного аппарата, чувственным протезом. Где начинается сам человек и где он заканчивается – не такой простой вопрос, как могло бы показаться с первого взгляда. Микоризные отношения ставят нас перед подобной дилеммой. Можем ли мы воспринимать растение вне связи с микоризной сетью, которая оплетает все вокруг и стремится наружу – от корней растения дальше в почву? Если мы последуем по запутанным лабиринтам мицелия, который расползается от корней растения, где мы должны остановиться? Должны ли мы думать также о бактериях, проносящихся сквозь почву по слизистой пленке, окутывающей корни и грибные гифы? Учитывать ли нам соседние грибные сети, сливающиеся с грибными сетями нашего растения? И – возможно, самое озадачивающее из всего – брать ли нам в расчет другие растения, чьи корни делят ту же самую грибную сеть?
Назад: Глава четвертая Мицелиевое сознание
Дальше: Глава шестая «Вселесная паутина»