Книга: Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее
Назад: Благодарности
Дальше: Библиография

Примечания

ВВЕДЕНИЕ. БЫТЬ ГРИБОМ
«способны творить здесь, на земле»: Хафиз (1315–1390), у Ladinsky (2010).
видов остаются неописанными и неизученными: Ferguson et al. (2003). Существует много других сообщений об огромных грибницах опят. В научной работе, опубликованной Anderson et al. (2018), исследована мицелиальная система в Мичигане возрастом предположительно 2500 лет, весом по крайней мере 400 тонн и простирающаяся примерно на 75 гектаров. Исследователи обнаружили, что у данного гриба очень низкий уровень генетической мутации, что позволяет предположить, что он каким-то образом защищается от вредного воздействия на его ДНК. Как грибу удается поддерживать такой стабильный геном, неизвестно, но, возможно, именно этим объясняется то, что он смог дожить до столь почтенного возраста. Кроме опят, одними из самых крупных организмов являются вегетативно размножающиеся морские травы и водоросли (Arnaud-Haond et al. [2012]).
чем род человеческий на Земле: Moore et al. (2011), ch. 2.7; Honegger et al. (2018). Окаменелости прототакситов (Prototaxites) обнаружены в Северной Америке, Европе, Африке, Азии и Австралии. С середины XIX века ученые пытаются определить, чем являлись прототакситы. Сначала считалось, что это сгнившие деревья. Вскоре после этого их статус повысили до гигантских морских водорослей, несмотря на подавляющее количество свидетельств того, что они росли на суше. В 2001 году, после десятилетий споров, был выдвинут аргумент в пользу того, что они были плодовыми телами некоего гриба. Аргумент весьма убедительный: прототакситы состояли из плотно переплетенных волокон, больше напоминающих грибные гифы, чем что-либо иное. Углеродно-изотопный анализ указывает на то, что они, скорее всего, выживали, поглощая то, что их окружало, а не за счет фотосинтеза. Недавно Selosse (2002) заявил, что более правдоподобной является версия, что прототакситы были гигантскими лишайникообразными структурами, представлявшими собой союз грибов и живущих за счет фотосинтеза водорослей. Он доказывает, что прототакситы были слишком велики, чтобы выжить за счет разложения растений. Если же они частично поддерживали себя фотосинтезом, прототакситы смогли бы добавить к своей диете из мертвых растений энергию, получаемую благодаря фотосинтезу. У них были бы и стимул, и средства, чтобы вырастать выше всего, что их окружало. Более того, прототакситы содержали жесткие полимеры, обнаруженные в водорослях того периода, и это позволяет предположить, что клетки водорослей жили внутри их, тесно переплетаясь с грибными гифами. Гипотеза о лишайниках также объясняет, почему они вымерли. После 40 миллионов лет, когда они доминировали на всей планете, прототакситы таинственным образом вымерли, как раз тогда, когда растения начали эволюционировать в деревья и кустарники. Это наблюдение прекрасно сочетается с гипотезой о том, что прототакситы были организмами, подобными лишайникам, потому что большее количество высоких растений означало меньше света для них.
как листья или корни: более широкий обзор грибного разнообразия и распространения см.: Peay (2016); о морских грибах см.: Bass et al. (2007); о грибных эндофитах см.: Mejía et al. (2014), Arnold et al. (2003) и Rodriguez et al. (2009). Исследование специализирующихся на алкоголе грибков, обнаруженных на ликероводочных заводах, где они процветают благодаря спиртным парам, поднимающимся от бочек с виски, по мере того как те стареют, ищите у Alpert (2011).
используют солнечную энергию: грибы, переваривающие камень, см.: Burford et al. (2003) и Quirk et al. (2014); о пластидах и ТНТ см.: Peay et al. (2016), Harms et al. (2011), Stamets (2011) и Khan et al. (2017); о не восприимчивых к радиации грибах см.: Tkavc et al. (2018); о радиографических грибах см.: Dadacheva and Casadevall (2008) и Casadevall et al. (2017).
снег, снег с дождем и град: об извержении спор см.: Money (1998), Money (2016) и Dressaire et al. (2016). О споровой массе и влиянии на погоду см.: Fröhlich-Nowoisky et al. (2009). Обзор многочисленных красочных решений, которые грибы создали в процессе эволюции, чтобы решить проблему рассеивания своих спор, см. в Roper et al (2010) и Roper and Seminara (2017).
нейронные клетки нервной системы животных: о потоке, см.: Roper and Seminara (2017); об электрических импульсах см.: Harold et al. (1985) и Olsson and Hansson (1995). Дрожжевые грибы составляют примерно 1 % грибного мира и размножаются почкованием, или простым делением на два. Некоторые дрожжевые грибы при особых обстоятельствах способны формировать гифовые структуры (Sudbery et al. [2004]).
нарисованы чернилами из навозника белого, Coprinus comatus: отчеты о том, как грибы пробиваются сквозь асфальт и поднимают тротуарные плиты см. в: Moore (2013b), ch. 3.
кусочками листьев: муравьи-листорезы не просто кормят свои грибы и дают им кров, они их также лечат. Грибные «огороды» муравьев-листорезов монокультурны, в них выращивается только один вид грибов. Подобно монокультурным посадкам человека, эти грибы очень уязвимы. Особенную опасность для них представляет гриб-паразит, который способен уничтожить весь грибной огород. Муравьи-листорезы собирают в хитроумные камеры на своих кутикулах бактерии, которые кормят из особых желез. Каждый муравейник культивирует свой собственный штамм бактерий, которых они отличают от всех остальных и предпочитают другим, даже близкородственным бактериям. Эти прирученные бактерии производят антибиотики, дающие мощный отпор паразитирующим грибам-вредителям и способствуют росту культивируемого данной муравьиной семьей гриба. Без этих грибов колонии муравьев-листорезов никогда бы не достигли таких больших размеров. См. Currie et al. (1999), Currie et al. (2006), Zhang et al. (2007).
в ближайшие десятилетия – по поводу древнеримского бога Робигуса см.: Money (2007), ch. 6 и Kavaler (1967), ch. 1. О грибных супербактериях см.: Fisher et al. (2012, 2018), Casadevall et al. (2019), и Engelthaler et al. (2019); грибковые болезни земноводных описаны у Yong (2019); о заболеваниях бананов см.: Maxman (2019). Среди животных болезни, вызываемые бактериями, представляют бóльшую опасность, чем те, что вызваны грибами. Для растений большую угрозу представляют болезни, вызванные грибками, а не бактериями. Такая схема действует и в плане заболеваний, и в плане поддержания здоровья. В микробиомах животных, как правило, доминируют бактерии, в то время как в микробиомах растений доминируют грибы. Это не значит, что животные совсем не страдают от грибковых заболеваний. Casadevall (2012) выдвигает гипотезу, что начало расцвета млекопитающих и сокращение количества рептилий, последовавшие за вымиранием динозавров на рубеже мелового и третичного периода, произошло благодаря тому, что млекопитающие были способны сопротивляться грибковым заболеваниям. По сравнению с рептилиями у млекопитающих есть несколько недостатков: быть теплокровным очень энергозатратно, а еще больше энергии требует производство молока и интенсивная родительская забота. Но вполне возможно, что именно повышенная температура тела млекопитающих препятствовала развитию грибковых патогенов, которые, как считается, в изобилии водились «во всемирной куче компоста», которая появилась в результате массовой гибели лесов во время вымирания мел-третичного периода. И до сегодняшнего дня млекопитающие более резистентны к обычным грибковым заболеваниям, чем земноводные и рептилии.
в качестве лекарства: исследование жизни неандертальцев см. в Weyrich et al. (2017); по поводу ледяного человека Этци см.: Peintner et al. (1998). Для каких конкретно целей ледяной человек использовал березовый трутовик (Fomitopsis betulina), узнать наверняка невозможно, но они горькие и похожи на пробку, так что очевидно, что он не собирался употреблять их в пищу. То, как аккуратно ледяной человек нес эти грибы – нанизанными на кожаный ремень, – говорит о глубоких знаниях об их ценности.
Второй мировой войны: о лекарственных препаратах на основе плесневых грибов см.: Wainwright (1989a 1989b). В костях человека из археологических раскопов в Египте, Судане и Иордане, датируемых примерно 400 годом н. э., было обнаружено высокое содержание антибиотика тетрациклина, что указывает на его длительный и регулярный прием, скорее всего в лечебных целях. Тетрациклин вырабатывается бактериями, а не грибами, но самым вероятным его источником было заплесневелое зерно, которое, скорее всего, предназначалось для приготовления лечебного пива (Bassett et al.[1980], Nelson et al. [2010]). Путь от первых наблюдений Флеминга до появления пенициллина прямым не был и потребовал огромных усилий: экспериментов, промышленных технологий, вложений капитала и политической поддержки. Прежде всего, Флемингу было очень трудно заинтересовать кого-нибудь своим открытием. По словам Милтона Уэйнрайта, микробиолога и историка науки, Флеминг был эксцентричен и слыл бездельником. «У него была репутация сумасшедшего и человека, делающего всякие нелепости – например, создавшего портрет королевы в чашке Петри при помощи бактериальных культур». Убедительное доказательство терапевтической ценности пенициллина появилось только через 12 лет после первых наблюдений Флеминга. В 1930-х годах группа исследователей в Оксфорде разработала метод экстрагировать и очищать пенициллин, а в 1940-х провела испытания, которые продемонстрировали его потрясающую способность бороться с инфекциями. Тем не менее производить пенициллин было по-прежнему сложно. В его отсутствие в широком доступе в медицинской литературе публиковали инструкции по выращиванию плесневых грибов. Грубые «кухонные» экстракты вместе с покрошенным мицелием на хирургической марле – «мицелиевые тампоны» – использовались некоторыми врачами для лечения инфекций, что, как показывали наблюдения, было удивительно эффективным (Wainwright [1989a и 1989b]). Промышленным способом производить пенициллин стали в Соединенных Штатах. Это произошло отчасти благодаря хорошо налаженным американским технологиям по выращиванию грибов в промышленных биореакторах, а отчасти – тому, что были открыты штаммы пенициллинового плесневого гриба с большей урожайностью, которая была еще больше увеличена несколькими мутациями. Промышленное производство пенициллина привело к тому, что ученые более усердно стали искать новые антибиотики и для этого исследовали тысячи грибов и бактерий.
грибов увеличиваются ежегодно: по поводу лекарств/наркотиков см.: Linnakoski et al. (2018), Aly et al. (2011), Gond et al. (2014). О псилоцибине см.: Carhart-Harris et al. (2016a), Griffiths et al. (2016), Ross et al. (2016). Информацию о вакцинах и лимонной кислоте ищите в The State of the World’s Fungi (2018). Сведения о рынке съедобных и лекарственных грибов можно найти на сайте www.knowledge-sourcing.com/report/global-edible-mushrooms-market [дата обращения 29 октября 2019 года]. В 1993 году в опубликованной в журнале Science статье сообщалось, что паклитаксель (paclitaxel) (продаваемый под брендом Taxol) производится грибом-эндофитом, выделенным из коры тихоокеанского тиса (Stierle et al. [1993]). После этого обнаружилось, что паклитаксель вырабатывается в значительно бóльших количествах грибами, не растениями – примерно двумя сотнями грибов-эндофитов, разбросанных по нескольким грибным семействам (Kusari et al. [2014]). Это сильное противогрибковое средство, и оно играет важную защитную роль: грибы, способные производить паклитаксель, способны отпугивать другие грибы/грибки. Против грибков он действует так же, как и против раковых клеток, – прерывая их деление. Производящие паклитаксель грибы не подвержены его воздействию, как и другие эндофиты тиса (Soliman et al. [2015]). Целый ряд других «грибных» противораковых препаратов появился в традиционной фармацевтике. Лентинан, полисахарид из гриба шиитаке, стимулирует способность иммунной системы бороться с разными видами рака и официально одобрен системой здравоохранения Японии для лечения рака груди и пищеварительного тракта (Rogers [2012]). PSK, соединение, выделенное из траметеса разноцветного, увеличивает время выживания пациентов, страдающих от ряда видов рака, и используется в Китае и Японии наряду с традиционными противораковыми средствами (Powell [2014]).
устойчивых к радиации биоматериалов: о грибных меланинах см.: Cordero (2017).
сложность и хитросплетения грибной жизни: о приблизительных оценках числа видов грибов см.: Hawksworth (2001) и Hawksworth and Lücking (2017).
когда действительно смотрим: среди неврологов вовлечение наших ожиданий в восприятие известно как влияние по нисходящей, или байесовский вывод (в честь Томаса Байеса, математика, который сделал фундаментальный вклад в теорию вероятностей). См.: Gilbert and Sigman (2007), и Mazzucato et al. (2019).
«они умнее меня»: Adamatzky (2016), Latty and Beekman (2011), Nakagaki et al. (2000), Bonifaci et al. (2012), Tero et al. (2010), и Oettmeier et al. (2017). В книге Advances in Physarum Machines («Достижения в области физаровых машин» (Adamatzky [2016]) исследователи подробно описывают многочисленные удивительные свойства слизевиков. Некоторые используют слизевиков для разработки схем принятия решений, другие воспроизводят исторические миграции людей и моделируют возможные схемы миграции людей на Луну в будущем. Математические модели, созданные благодаря слизевикам, включают бесквантовое воплощение факторизации Шора, вычисление самых коротких путей и проектирование сетей поставок. Oettmeier et al. (2017). Заметьте, что Хирохито, император Японии в 1926–1989 годах, был увлечен слизевиками и в 1935 году опубликовал на эту тему книгу. С тех пор изучение слизевиков остается в Японии очень престижным занятием.
возможно, начнет изменяться: система классификации растений и животных, составленная Карлом Линнеем и опубликованная в его Systema Naturae в 1735 году, несколько измененную версию которой мы используем и по сей день, включила в эту иерархию и человеческие расы. На вершине пирамиды были европейцы: «Очень умные, изобретательные. Покрыты плотно облегающей одеждой. Подчиняются закону». Дальше следовали американцы: «Ими управляет традиция». Затем азиаты: «Ими правит мнение». После них африканцы: «Медлительные, ленивые… хитрые, туповатые, беспечные. Подчиняются капризу». (Kendi [2017]) В том, в каком порядке в иерархических классификациях расставляются виды, можно усмотреть «видовой расизм».
звезд в нашей Галактике: о микробных сообществах в различных частях тела см.: Costello et al. (2009) и Ross et al. (2018). Сравнение со звездами нашей Галактики взято из работы Yong (2016), ch.1. Уистон Хью Оден в своем «Новогоднем поздравлении» (“New Year Greeting”) предлагает экосистемы своего тела своим жильцам-микробам. «Существам вашего размера я предлагаю / свободный выбор места обитания, / так что устраивайтесь в зоне, / которая подходит вам лучше всего: в водоемах / моих пор или тропических / лесах моих подмышек и паха, / в пустыне моих предплечий, / или в прохладных лесах волос на голове».
неотъемлемая часть жизни: относительно пересадки органов и клеточных культур человека см.: Ball (2019). О приблизительной оценке размера нашего микробиома можно узнать в работе Bordstein and Theis (2015). О вирусах внутри вирусов см.: Stough et al. (2019). Общее введение в изучение микробиомов см.: Yong (2016) и специальный выпуск журнала Nature, посвященный человеческим микробиомам (май 2019 г.): www.nature.com/collections/fiabfcjbfj [дата обращения 29 октября 2019 г.].
темной материей или темной жизнью: В каком-то смысле все биологи являются ныне экологами, однако у профессиональных экологов есть преимущество, и их методы и технологии начали просачиваться в новые области. Ряд биологов стали призывать к применению экологических методов в областях биологии, исторически не связанных с экологией. См.: Gilbert and Lynch (2019) и Venner et al. (2009). Существует множество примеров эффекта домино, связанного с микробами, живущими внутри грибов. Исследование, опубликованное Marquez et al. (2007) в журнале Science в 2007 г., описывает «вирус, живущий в грибке, живущем в растении». Это растение – тропическая трава – растет в естественных условиях в хорошо прогретой почве. Однако без грибка-партнера, живущего в ее листьях, трава не сможет выжить при высоких температурах. И у грибка, развивающегося самостоятельно, дела идут не лучше – выжить он тоже не может. Но, как выясняется, способность выживать при высокой температуре дарует отнюдь не грибок. Устойчивость к ней предоставляет вирус, живущий внутри грибка: без этого вируса ни растение, ни грибок не перенесут экстремальных условий. Иными словами, микробиом грибка определяет роль, которую грибок играет в микробиоме растения. Исход ясен: жизнь или смерть. Пожалуй, одним из самых показательных примеров микробов, обитающих внутри других микробов, является печально известный гриб, вызывающий пирикуляриоз риса, или рисовую гниль – Rhizopus microsporus. Токсины Rhizopus вырабатываются некой бактерией, которая живет в гифах этого гриба. Эффектной иллюстрацией того, насколько взаимозависимы судьбы грибов и их компаньонов-бактерий, является необходимость этой бактерии для этого гриба не только в деле провоцирования болезни риса, но и для размножения. Если «вылечить» Rhizopus, избавив его от бактерий, он потеряет способность производить споры. Бактерия отвечает за самые важные аспекты жизни гриба, от его диеты до сексуального поведения. См.: Araldi-Brondolo et al. (2017), Mondo et al. (2017) и Deveau et al. (2018).
только сейчас начинаем осознавать: Замечания, касающиеся потери собственной идентичности, см.: Relman (2008). Вопрос о том, воспринимать ли человека как единое целое или некое множество, совсем не нов. В физиологии XIX века тела многоклеточных организмов воспринимались как сообщество клеток, и каждая была индивидуальностью – по аналогии с гражданами национальных государств. Эти вопросы усложняются развитием отраслей микробиологии, потому что многочисленные клетки в вашем организме не связаны непосредственно между собой родственными связями, как, например, обычная клетка печени с обычной почечной клеткой. См.: Ball (2019), ch. 1.
Глава 1. СОБЛАЗН
Кто кого соблазняет?: Музыкант и исполнитель Prince, “Illusion, Coma, Pimp & Circumstance, Musicology” (2004).
для глаз животных они невидимы: психотропные «трюфели», продающееся в Амстердаме, плодовыми телами подлинных трюфелей, несмотря на свое название, не являются. Это грибные органы для переживания неблагоприятных условий, известные как склероции, которые называют трюфелями за внешнее сходство.
вспоминают запахи, ассоциирующиеся с их травмой: по поводу триллионов запахов см.: Bushdid et al. (2014); об ориентировании при помощи обоняния см.: Jackobs et al. (2015); об обонятельных воспоминаниях и человеческом обонянии в целом см.: McGann (2017). Некоторых людей считают «супернюхачами», или гиперосмическими личностями, то есть людьми с болезненно обостренным обонянием. В исследовании, опубликованном Trivedi et al. (2019), сообщалось о том, как такой «супернюхач» только по запаху диагностировал болезнь Паркинсона.
металлический и масляный запах: по поводу запаха различных химических соединений и связей см.: Burr (2012), ch. 2.
олимпийских бассейнах: эти рецепторы входят в большое семейство рецепторов, сопряженных с G-белком (GPCR). Они также известны как семиспиральные, или серпантинные, рецепторы. О чувствительности человеческих органов обоняния см.: Sarrafchi et al. (2013). Согласно автору, люди способны почувствовать некоторые запахи, когда их концентрация составляет всего 0,001 частицы на триллион.
«…визуальные и эмоциональные воспоминания»: О turmas de tierra см.: Ott (2002). По словам Аристотеля, трюфели – это «плоды, посвященные Афродите». Считается, что Наполеон Бонапарт и маркиз де Сад использовали их в качестве афродизиака, а Жорж Санд описала их как «черное магическое яблоко любви». Французский гастроном Жан Антельм Брилья-Саварен сделал запись о том, что «трюфели способствуют эротическому наслаждению». В 1820-х годах он отправился проверять это распространенное мнение и провел ряд консультаций с дамами («все ответы были ироничны или уклончивы») и кавалерами («которые в силу своей профессии наделены особым доверием»). Он пришел к выводу, что «трюфель не является настоящим афродизиаком, но при определенных обстоятельствах женщины под его воздействием становятся более нежными, а мужчины – более внимательными» (Hall et al. [2007], p. 33).
«скоропортящиеся и недолговечные»: о Лоране Рамбо см.: Chrisafis (2010). Журналист Райан Джейкобс (Ryan Jacobs) приводит свидетельства грязных махинаций, которые происходят по всем каналам добычи и поставок трюфелей. Некоторые отравители используют фрикадельки со стрихнином, другие травят водоемы в лесу, чтобы отравить даже собак в специальных намордниках, третьи разбрасывают куски мяса с осколками стекла, четвертые используют крысиный яд или антифриз. На основании отчетов ветеринаров, сотни отравленных собак поступают к ним на лечение каждый трюфельный сезон. Власти пришли к тому, что стали охранять определенные леса с помощью собак, натасканных на поиск отравы. (Jacobs [2019], pp. 130–34). В 2003 году The Guardian сообщала, что у Мишеля Турнэра (Michel Tournayre), французского эксперта по трюфелям, похитили охотничью собаку. Турнэр подозревал, что похитители не продали его собаку, а использовали ее для воровства трюфелей на чужой территории (Hall et al. [2007], p. 209). Разве есть более искусный способ украсть трюфели, чем предварительная кража трюфельной собаки-ищейки?
разрушающими древесину: о лосях с окровавленными носами см.: Tsing (2015), “Interlude. Smelling”; об опыляемых мухами орхидеях читайте Policha et al. (2016); об орхидных пчелах эуглоссинах, собирающих сложные ароматические соединения, см. Vetter and Roberts (2007); о сходстве с соединениями, вырабатываемыми грибами, см.: de Jong et al. (1994). Орхидные пчелы выделяют жирное вещество, которым они обмазывают пахучий объект. Как только запах впитался, они соскабливают жир с поверхности предмета и собирают его в «кармашках» на задних лапках. Этот метод идентичен анфлеражу, который люди используют уже сотни лет для вытяжки ароматических масел из таких цветов, как жасмин, – слишком нежных, чтобы подвергать их тепловой обработке (Eltz et al. [2007]).
исчезновению деревьев рода Аквилария в дикой природе: Naef (2011).
призрачные тени на дискотеке: о Бордо см.: Corbin (1986), p. 35.
нелинейно с увеличением их размеров: о трюфеле-рекордсмене можно узнать на news.bbc.co.uk/1/hi/world/europe/7123414.stm [дата обращения 29 октября 2019 г.].
работы нескольких организмов: о роли микробиома трюфелей в создании ароматов см.: Vahdatzadeh et al. (2015). Когда я был на охоте с Паридом и Даниэлем, я заметил, что трюфель, извлеченный из заиленной почвы у реки, пах не так, как трюфель, откопанный из более плотной глинистой почвы дальше в долине. Подобное отличие вряд ли будет иметь значение для голодной землеройки. Однако белый трюфель, найденный в Альбе, будет продан в четыре раза дороже белого трюфеля из окрестностей Болоньи (хотя тот факт, что торговцы трюфелями часто выдают трюфели из-под Болоньи за трюфели из Альбы, свидетельствует о том, что не все способны эту разницу почувствовать). Региональные отличия профилей летучих компонентов трюфельных ароматов были подтверждены научными изысканиями (Vita et al. [2015]).
Андростенол никто из них не нашел: первое сообщение о том, что трюфели вырабатывают андростенол, см.: Claus et al. (1981); о продолжении исследования девять лет спустя см.: Talou et al (1990).
даже для классификации и измерений: с годами количество летучих компонентов, производимых единственным видом трюфелей, постоянно увеличивается – по мере того, как улучшается чувствительность инструментов и методов. Они все еще уступают в тонкости восприятия человеческому носу, и количество летучих ароматических соединений скорее всего увеличится в будущем. О летучих ароматических соединениях белых трюфелей см.: Pennazza et al. (2013) и Vita et al. (2015); о других видах см.: Splivallo et al. (2011). Существует ряд причин не приписывать только одному соединению заслугу создания обаяния трюфельного аромата. В работе Talou et al. (1990) исследовано крайне мало животных и лишь один вид трюфелей, закопанных только в одном месте на одинаково небольшой глубине. Другие подгруппы характеристик летучих соединений могли бы проявиться лучше, если бы трюфели были закопаны на разной глубине и в разных местах. Более того, в природе трюфели привлекают самых разных животных – от диких свиней до мышей-полевок и насекомых. Возможно, разные элементы коктейля летучих соединений, производимых трюфелями, привлекают разных животных. Возможно, андростенол действует на животных более тонко. Он может не действовать сам по себе, как предполагалось в эксперименте, но только в сочетании с другими соединениями. С другой стороны, его роль может быть не так важна для поиска трюфелей, но в то же время является мотивом для поедания гриба. Более подробную информацию о ядовитых трюфелях см.: Hall et al. (2007). Кроме Gautieria, трюфели вида Choiromyces meandriformis описываются как пахнущие «тошнотворно, перебивающие остальные запахи»; в Италии он считается несъедобным (хотя в Северной Европе он очень популярен). Balsamia vulgaris: еще один вид, считающийся малосъедобным в Италии, хотя собакам, кажется, очень нравится его запах «прогорклого жира».
с ними с такой поспешностью: об экспорте и упаковке трюфелей см.: Hall et al. (2007), pp. 219, 227.
привлекать себя к себе: в тех областях мицелия, которые исследуют территорию, гифы растут в разные стороны, не соприкасаясь. В более зрелых частях мицелиевой системы наклонности гиф меняются коренным образом. Растущие кончики гиф начинают стремиться друг к другу (Hickey et al. [2002]). Каким образом гифы притягивают или отталкивают друг друга, еще очень плохо изучено. Работа с модельными организмами, хлебным плесневым грибом Neurospora crassa, уже дает кое-какие ключи к пониманию этих процессов. Кончики гиф по очереди испускают некий феромон, который привлекает и возбуждает другие гифы. Благодаря этому движению феромонов взад-вперед, словно пасы мячом, как пишут авторы одного исследования, гифы способны вовлечь друг друга во взаимодействие и настроиться друг на друга, следуя определенному ритму. Именно это колебание – «химическое ралли» – позволяет им увлечь других, не приходя в возбуждение. Делая «пас», они не способны заметить феромон. Когда «бьет» другая сторона, они возбуждаются (Read et al. [2009] и Goryachev et al. [2012]).
постепенно раствориться в другой сущности: о типах спаривания Schizophyllum commune см.: МсСоy (2016), p. 13; о слиянии между сексуально несовместимыми гифами см.: Saupe (2000) и Moore et al. (2011), ch. 7.5. Способность гиф сливаться друг с другом определяется их «вегетативной совместимостью». Как только соединение произошло, отдельная система типов спаривания определяет, которое ядро будет подвергаться половой рекомбинации. Эти две системы регулируются по-разному, хотя половая рекомбинация не может произойти, если гифы не слились и не поделили генетический материал. Предсказать результат вегетативного слияния разных мицелиевых систем может быть очень сложно (Ryner et al. [1995] и Roper et al. [2013]).
для этого притягивающим противоположный пол феромоном: о подробностях сексуальной жизни трюфелей см.: Selosse et al. (2017), Rubini et al. (2007) и Taschen et al. (2016); примеры интерсексуальности в мире животных см.: Roughgarden (2013). Если производители трюфелей действительно хотят освоить эту отрасль, они должны разбираться в половой жизни этих грибов. Проблема в том, что они ничего о ней не знают. Никто никогда не заставал трюфели в процессе оплодотворения. Быть может, это и не удивительно, если вспомнить, насколько недоступным является их образ жизни. Удивительнее то, что еще никому не удалось обнаружить гифу, играющую мужскую, отцовскую роль. Исследователям удалось найти только материнские гифы, растущие на корнях и в почве, не важно со знаком «+» или «—». Кажется, у отцовских гиф очень короткая жизнь: окончив оплодотворение, они исчезают: «рождение, капля секса, после – ничего» (Dance [2018]).
снуют повсюду и ангажируют друг друга бесчисленные корни, грибы и микробы: гифы некоторых видов микоризных грибов могут втягиваться обратно в свои споры и выпускать ростки позднее (Wipf et al. [2019]).
физиологии своих партнеров: о воздействии грибов на корни растений см.: Ditengou et al. (2015), Li et al. (2016), Splivallo et al. (2009), Schenkel et al. (2018), и Moisan et al. (2019).
друг другу в режиме реального времени: об эволюции средств коммуникации в микоризных симбиозах, включая ослабление иммунного ответа, см.: Martin et al. (2017); о сигнальных каскадах между грибами и растениями и их генетической основе см.: Bonfante (2018); об общении между грибами и растениями в других типах микоризных связей см.: Lanfranco et al. (2018). Химические призывы, посылаемые грибами, полны нюансов и обладают широким динамическим диапазоном. Летучие химические соединения, используемые грибом для общения с растением, могут также использоваться для передачи информации популяциям бактерий (Li et al. [2016] и Deveau et al. [2018]). Грибы также используют летучие соединения для отпугивания грибов-соперников; растения используют такие соединения, чтобы отгонять нежелательные грибы (Li et al. [2016] и Quintana-Rodriguez et al. [2018]). Одно и то же летучее соединение в разной концентрации может по-разному воздействовать на растения. Растительные гормоны, производимые некоторыми трюфелями для манипуляции принимающими растениями, могут убить растение, если повысить концентрацию гормона. Но они же могут играть и роль оружия против конкурентов, отпугивая растения, которые могут соперничать с их растениями-партнерами (Splivallo et al. [2007 и 2011]). Некоторые виды грибов паразитируют на определенных видах трюфелей, возможно привлеченные их химическими сигналами. Трюфель-паразит, Tolypocladium capitata, двоюродный брат грибов Ophiocordyceps, паразитирующих на насекомых, паразитирует, как известно, на некоторых видах трюфелей, таких как олений трюфель Elaphomyces (Rayner et al. [1995]; фото см. на сайте mushroaming.com/cordyceps-blog [дата обращения 29 октября 2019 г.]).
за ними пока не успевает: о первом сообщении о развитии плодового тела Tuber melanosporum на Британских островах – что, как считают, было вызвано погодными изменениями, – см.: Thomas and Büntgen (2017). «Современный» метод выращивания Tuber melanosporum был разработан только в 1969 году и привел к появлению первой партии искусственно оплодотворенных трюфелей в 1974-м. Корневая рассада выращивается вместе с мицелием Tuber melanosporum и высаживается в грунт, когда грибы уже полностью обосновались на корнях. Через несколько лет в благоприятных условиях гриб начнет производить плодовые тела. Территория, на которой искусственно выращивают трюфели, постоянно увеличивается (более 40 000 гектаров по всему миру), и трюфельные огороды, где выращивается черный перигорский трюфель, приносят хороший урожай от Соединенных Штатов до Новой Зеландии (Büntgen et al. [2015]). Лефевр объяснил, что даже если бы он подробно расписал свою методику по пунктам, ее бы трудно было воспроизвести. Так много делается интуитивно, что передать это сложно, это трудно проследить. Мельчайшие детали – от капризов погоды до условий в питомнике для рассады – имеют огромное значение. Частью проблемы является еще и скрытность. Производители трюфелей много времени убивают, блуждая в потемках неопределенности, на ощупь отыскивая обходной путь вокруг ревностно охраняемых авторских методик. «У традиции сбора грибов древние корни, – сказал мне Бюнтген (Büntgen). – Многие идут в лес собирать грибы, но никогда ничего не рассказывают. Если спросить, как прошел их день, они ответят: “О, я нашел столько грибов!”, но скорее всего, они не нашли ничего. Это продолжается поколениями и очень замедляет исследования». Не отчаиваясь, Лефевр каждый год выращивает деревья с мицелием неуловимого Tuber magnatum в надежде, что что-нибудь как-нибудь послужит толчком к формированию плодовых тел. Вооружась тем же оптимизмом, он продолжает эксперименты по скрещиванию видов европейских трюфелей с американскими деревьями (оказалось, что у Tuber magnatum складываются вполне здоровые, хотя и бесплодные отношения с осинами). Другие производители изолируют бактерии из трюфелей, надеясь, что они стимулируют рост мицелия Tuber (некоторые группы бактерий кажутся многообещающими). Я спросил Лефевра, многие ли покупают его деревья с Tuber magnatum для своих трюфельных ферм. «Немногие, – ответил он, – но мы все равно продаем деревья, считая, что если не пытаться, ничего ни у кого никогда не получится».
подслушивают и шпионят за своими жертвами: о химическом «подслушивании» и «шпионаже» см.: Hsueh et al. (2013).
Условно можно назвать стрекательными: Nordbring-Hertz (2004) и Nordbring-Hertz et al. (2011).
опцию, остается неизвестным: Nordbring-Hertz (2004).
или забыть метить: сегодня область биологии, воспламененная спорами oб антропоморфизме, – изучение растений и тех способов, которыми они воспринимают среду и реагируют на нее. В 2007 году 36 выдающихся ботаников подписали письмо, которое уничтожило зарождающуюся «область нейробиологии растений» (Alpi et al. [2007]). Те, кто выдвинул этот термин, утверждали, что у растений есть системы электрических и химических сигналов, эквивалентные тем, что были обнаружены у человека и других животных. 36 авторов письма заявили, что это «поверхностные аналогии и сомнительные экстраполяции». Последовал весьма оживленный спор (Trewavas [2007]). С антропологической точки зрения, эти противоречия необыкновенно интересны. Наташа Майерс, антрополог из Йоркского университета в Канаде, опросила ряд ботаников, как они понимают поведение растений (Myers [2014]). Она описала неспокойную ситуацию в отношении к антропоморфизму и различные способы, которые исследователи применяли, чтобы разобраться в ней.
попадают в другую западню: Kimmerer (2013), “Learning the Grammar of Animacy”.
от которых зависит их существование: «Его отношения с деревом, приютившим его, очень плохо изучены, – объяснил Лефевр, – даже в тех местах, где урожайность трюфелей высока, соотношение корней, колонизированных грибом, часто чрезвычайно низкое. Это значит, что объяснить урожайность количеством минеральных веществ, получаемых грибом от его дерева, нельзя».
не принадлежащих миру людей организмах: о запахах и их сходстве см.: Burr (2012), ch. 2. Антрополог Анна Цзин (Anna Tsing) пишет, что в период Эдо в Японии (1603–1868) запах грибов мацутаке стал популярной темой в поэзии. Прогулки за грибами мацутаке превратились в осенний эквивалент празднования цветения сакуры и ссылки на «осенний аромат» или «аромат грибов» стали привычными поэтическими тропами (Tsing [2015]).

 

Глава 2. ЖИВЫЕ ЛАБИРИНТЫ
и нет нити, ведущей из него: Cixous (1991).
каким-то невероятным образом, является и одним, и многими одновременно: о поиске грибом выхода из лабиринта см.: Hanson et al. (2006), Held et al. (2009, 2010, 2011, 2019). Великолепные видео и дополнительную информацию о Held et al. (2011) см. на сайте www.sciencedirect.com/science/article/pii/S1878614611000249 [дата обращения 29 октября 2019 г.] и www.pnas.org/content/116/27/13543/tab-figures-data [дата обращения 29 октября 2019 г.].
бросающий вызов нашему воображению, ограниченному принадлежностью к животному миру: о морских грибах см.: Hyde et al. (1998), Sergeeva and Kopytina (2014) и Peay (2016); о грибках в пыли см.: Tanney et al. (2017); по поводу приблизительного определения длины грибных гиф в почве см.: Ritz and Young (2004).
Она полностью перестроилась: часто наблюдаемое явление см.: Boddy et al. (2009) и Fukusawa et al. (2019).
еще не знаем, что лежит в основе их памяти: Fukusawa et al. (2019). Послужил ли новый кусок дерева причиной изменения концентрации химических веществ или экспрессии генов по всей сети? Или мицелий быстро перераспределился в пределах старого куска дерева, чтобы расти заново в одном направлении было проще? У Бодди (Boddy) и ее коллег уверенности в этом нет. Исследователи, ставившие перед грибами задачу найти выход из микроскопических лабиринтов, заметили, что структуры внутри растущих кончиков гиф ведут себя как встроенные гироскопы. Они позволяют гифам запоминать направление, благодаря чему те возвращаются на изначальную траекторию роста после отклонения от нее. Так они обходят препятствия (Held et al. [2019]). Однако маловероятно, чтобы этот механизм вызвал эффект, который наблюдали Бодди и ее коллеги, так как все гифы – включая кончики – были полностью удалены с первого куска дерева, прежде чем его поместили в новую чашку Петри.
Мицелий – это множество: грибные гифы не похожи на клетки тел животных или растений, у которых (обычно) есть четко определенные границы. Строго говоря, гифы вообще не стоит считать клетками. По всей длине гиф многих грибов имеются разделительные перегородки – септы, – которые могут открываться и закрываться. Когда они открыты, содержимое гиф может перетекать из «клетки» в «клетку», и тогда о грибницах говорят, что они перешли в «надклеточное» состояние (Read [2018]). Одна грибница может слиться со многими другими с образованием обширных «гильдий». Внутри их веществами, проходящими по одной мицелиевой сети, могут воспользоваться и другие грибницы. Где начинается и заканчивается клетка? Где начинается и заканчивается мицелиевая сеть? Ответить на эти вопросы зачастую невозможно. О недавних исследованиях стайного и роевого поведения см.: Bain and Bartolo (2019), а также комментарии Oullette (2019). В этом исследовании стаи и рои трактуются как единые сущности, а не как коллектив особей, ведущих себя в соответствии с локальными правилами. Рассматривая стаю или рой как флюидный поток, можно смоделировать схему их поведения. Вполне возможно, что при помощи этих «гидродинамических» моделей нисходящих потоков можно построить матрицу роста кончиков гиф. Но это сложнее, если опираться на модели стаи/роя, основанные на взаимодействии отдельных особей, подчиняющихся локальным правилам.
или программировать роботов: по поводу слизевиков см.: Tero et al. (2010), Watanabe et al. (2011), Adamatzky (2016); о грибах см.: Asenova et al. (2016) и Held et al. (2019).
в поисках еды: об обсуждении компромиссов, на которые идут грибницы, см.: Bebber et al. (2007).
тело без структуры: дискуссию о естественном выборе связей в мицелиевых сетях см.: Bebber et al. (2007).
«Детям нравилось»: о роли грибной биолюминесценции и распространения спор насекомыми см.: Oliveira et al. (2015); о лисьих огнях и «Черепахе» (the Turtle) см.: www.cia.gov/library/publications/intelligence-history/intelligence/intelltech.html [дата обращения 29 октября 2019 г.] и Diamant (2004), p. 27. В своем руководстве по грибам, опубликованном в 1875 году, Мордехей Кук (Mordecai Cooke) писал, что биолюминесцентные грибы обычно растут на деревянных опорах, используемых в угольных шахтах. Шахтеры «хорошо знакомы с фосфоресцирующими грибами и утверждают, что грибы дают столько света, “что видно руки”. Разновидности трутовика светились настолько ярко, что их было видно за 20 ярдов».
другое физиологическое состояние: видео Olsson см. на сайте doi.org/10.6084/m9.figshare.c.4560923.v1 [дата обращения 29 октября 2019 г.].
за такое короткое время: в исследовании, опубликованном Oliveira et al. (2015), говорилось, что биолюминесцентный мицелий Neonothopanus gardneri регулируется циркадными температурозависимыми биоритмами. Авторы выдвигают теорию, что, усиливая свечение ночью, грибы привлекают насекомых, которые разносят их споры. Явление, которое наблюдал Олссон, тем не менее нельзя объяснить, опираясь на циркадные биоритмы, так как оно наблюдалось лишь однажды за несколько недель.
тела в пищу: о диаметрах гиф см.: Fricker et al. (2017). Эколог Роберт Уиттэкер (Robert Whittaker) заметил, что в то время, как эволюция животных – это история «изменчивости и вымирания», эволюция грибов – это история «консерватизма и преемственности». Огромное разнообразие строения тел животных, найденных в виде окаменелых ископаемых, иллюстрирует многочисленные способы питания, избранные ими. О грибах этого сказать нельзя. У мицелиевых грибов было намного больше времени для развития, чем у многих других организмов, но грибные окаменелости поразительно похожи на грибы, что растут в наши дни. Оказывается, существует всего несколько способов существования в виде сети. См.: Whitteker (1969).
ловить падающие листья: о мицелиевых сетях, которые ловят опадающие листья, см.: Hedger (1990).
восьмитонный школьный автобус: измерения давления, оказываемого патогенным грибком рисовой гнили, ищите у Howard et al. (1991); о восьмитонном школьном автобусе, как и об агрессивном росте грибов, см.: Money (2004а). Чтобы оказать такое высокой давление, гифы должны приклеиться к растению и не отставать от его поверхности. Для этого они вырабатывают клейкое вещество, которое выдерживает механическое напряжение 10 мегапаскалей. Для сравнения: суперклей может выдержать механическое напряжение в 15–25 мегапаскалей, хотя, вероятно, не на восковой поверхности листа растения (Roper and Seminara [2017]).
600 в секунду: клеточные полости известны как везикулы (в переводе с латыни – «пузырьки»). Ростом кончиков гиф управляет клеточное образование, или органелла, которую называют телом конца гифы (Spitzenkörper). В отличие от большинства органелл, у этой нет четко очерченных границ. Она не представляет собой единую структуру, такую как ядро, хотя кажется, что ведет себя как единое целое. Это тело рассматривают как «центр поставки везикул», получающий везикулы изнутри гиф и сортирующий их, а затем распределяющий по растущим гифовым концам. Оно управляет и собой, и своими гифами. Деление концов вызывает ветвление гиф. Когда прекращается рост, исчезает и эта органелла. Если изменить ее положение в растущем кончике гифы, ее можно направить в другую сторону. Эта органелла может уничтожить то, что создает, растворив стенки гиф и дав таким образом возможность слиться разным частям мицелиевой сети. Об этой органелле см.: Moore (2013a), ch. 2, а также Steinberg (2007); о том, что гифы некоторых разновидностей грибов могут увеличиваться в длину на глазах, см.: Roper and Seminara (2017).
в его постоянном развитии: описание течения времени, сделанное французским философом Анри-Луи Бергсоном, напоминает описание развития грибных гиф: «Длительность – это непрерывное продвижение вперед прошлого, которое вгрызается в будущее и набухает по мере продвижения вперед» (Bergson [1911], p. 7). С точки зрения биолога Дж. Б. С. Хэлдейна (J. B. S. Haldane), жизнь представлена не объектами, а стабилизированными процессами. Хэлдейн зашел настолько далеко, что назвал «концепцию вещи, или материального объекта, бесполезной» для биологической мысли (Dupré and Nicholson [2018]). Введение в процессуальную биологию ищите у Dupré and Nicholson (2018). Цитату Бейтсона см. в Bateson (1928), p. 209.
«весил 83 фунта»: о сморчках вонючих, прорастающих сквозь асфальт, см.: Niksic et al. (2004); о Куке см.: Moore (2013b), ch. 3. Рост кончиков происходит не только у грибных гиф, но и у других организмов; это исключение, а не правило. Нейроны в организме животных растут, удлиняясь на конце, то же самое происходит и с некоторыми типами растительных клеток, например пыльцевыми трубками. Но ни те, ни другие не способны удлиняться бесконечно, как грибные гифы в способствующих их росту условиях (Riquelme [2012]).
и существуя бок о бок: Фрэнк Дуган (Frank Dugan) описывает «травниц» или «знахарок» в Европе эпохи Реформации как «повитух/акушерок» области современной микологии (Dugan [2011]). Множество письменных свидетельств позволяет предположить, что женщины были основными хранительницами знаний о грибах. Большую часть информации о грибах, которые они описали в своих научных трудах, мужчины-ученые того времени, включая Каролуса Клузиуса (Шарля де Леклюза; 1526–1609) и Франциска ван Стербека (1630–1693), почерпнули именно у таких женщин. Ряд художественных полотен – от «Торговки грибами» (Феличе Бозелли (1650–1732)) до «Женщин, собирающих грибы» (Камиль Писсаро (1830–1903)) и «Сборщиц грибов» (Феликс Шлезингер, 1833–1910) – изображают женщин, занимающихся грибами. В многочисленных заметках европейских путешественников XIX и XX веков описываются женщины, собирающие или продающие грибы.
воспроизведенные каждым из них мелодии будут сильно отличаться друг от друга: о полифонии и ее определении см.: Bringhurst (2009), ch. 2, «Поющие с лягушками: теория и практика литературной полифонии» (“Singing with the frogs: the theory and practice of literary polyphony”).
образований, до сих пор неясно: оценку скорости перемещения потока веществ в шнуровидных образованиях и ризоформах можно найти у Fricker et al. (2017). Обычно считается, что для регулирования своего развития грибы используют химические вещества, однако о том, какие именно, известно очень мало (Moore et al. [2011], ch. 12.5, и Moore [2005]). Как могут такие четкие формы возникнуть из однородной массы гифовых нитей? Палец любого представителя животного царства является очень сложной формой. Но он создан из сложного сочетания различных видов клеток – кровяных клеток, костных клеток, нервных клеток и всех остальных. Грибы тоже представляют собой сложные формы, но они – пучки, изваянные только из одного вида клеток, из гиф. Как грибы создают свои плодовые тела, очень долго оставалось тайной. В 1921 году русский эволюционный биолог Александр Гурвич размышлял о развитии грибов. Ножка гриба, юбочка вокруг нее и шляпка гриба состоят из гиф, торчащих в разные стороны, как «лохматые нечесаные волосы». Вот что его озадачивало. Строить плодовое тело гриба только из гиф – это все равно что пытаться создать лицо из одних только мышечных клеток. С точки зрения Гурвича, то, как гифы срастаются для создания сложных форм, являлось одной из самых главных загадок во всей эволюционной биологии. Организация тела животного специализирована на самых ранних стадиях его развития. Форма его тела возникает из четко организованных составляющих; регулярность порождает дальнейшую регулярность. Но форма грибного плодового тела складывается из менее организованных частей. Правильная форма возникает из не имеющего четкой организации материала (von Bertalanffy [1933], pp. 112–17). Отчасти воодушевленный процессом грибного роста, Гурвич выдвинул гипотезу о том, что развитие организмов управляется полями. Расположение железных стружек можно изменить при помощи магнитного поля. Аналогичным образом, развивал свою теорию Гурвич, расположением клеток и тканей внутри организма можно управлять при помощи формирующих биологических полей. Полевая теория развития Гурвича была подхвачена целым рядом современных биологов. Майкл Левин (Michael Levin), исследователь Университета Тафтса в Бостоне, описывает, как все клетки омываются «насыщенным морем информации», состоящим либо из физических, либо из химических, либо из электрических сигналов. Эти информационные поля помогают объяснить, как могут возникнуть сложные формы (Levin [2011] и [2012]). В исследовательской работе, опубликованной в 2004 году, была построена математическая модель, воспроизводящая процесс роста грибного мицелия – «кибергриб» (Meskkauskas et al.) [2004], Money [2004b], и Moore [2005]). В данной модели каждый кончик гифы способен влиять на поведение других гифовых кончиков. В исследовании сообщается, что грибообразные формы могут возникнуть, когда абсолютно все концы гиф в своем развитии подчиняются одним и тем же правилам роста. Эти изыскания подводят к выводу о том, что формы плодовых тел грибов могут рождаться в результате «коллективного поведения» гиф, не нуждаясь в той координации развития по нисходящей, которая проявляется у животных и растений. Но чтобы это осуществилось, десятки тысяч гифовых концов должны одновременно подчиниться одному и тому же набору правил, а затем переключиться на другой набор правил, и тоже одновременно – современная интерпретация загадки Гурвича. Исследователи, создавшие кибергриб, предполагают, что изменения в развитии могут координироваться клеточными «часами» и биоритмами, но ничего подобного такому механизму пока обнаружено не было, и то, как живые грибы координируют свое развитие, остается загадкой.
тем местом, где выросли сами плодовые тела грибов: о микротрубочковых моторах см.: Fricker et al. (2017); о домовом грибе Serpula Lakrymans в Хэддон-Холл см.: Moore (2013b), ch. 3; с дискуссией о роли потока веществ в развитии грибов можно ознакомиться у Alberti (2015) и Fricker et al. (2017). Скорость потока веществ в грибных гифах варьируется от 3 до 70 микрометров в секунду, что иногда в 100 раз превышает скорость только пассивного переноса (Abadeh and Lew [2013]). Алану Рейнеру (Alan Rayner) нравится сравнение с рекой, потому что реки – это «системы, которые и формируют ландшафт, и формируются ландшафтом». Река течет между берегами. В процессе течения она придает форму берегам, в пределах которых она течет. Рейнер воспринимает гифы как реки с тупым концом, текущие между берегами, которые они создают для себя. Как и в любой проточной системе, давление – это главное. Гифы поглощают воду из окружающей их среды. Внутренний поток воды увеличивает давление в сети. Но само по себе давление не вызывает течения. Чтобы вещество потекло по мицелию, гифы должны создать пространство, в которое поток устремится. Это происходит благодаря росту гиф. Содержимое гиф направляется в сторону их растущих кончиков. Вода течет по мицелиевой сети в сторону быстро набухающего плодового тела гриба. Если изменить перепад давления на противоположный, поток направится обратно (Roper et al. [2013]). Однако гифы, оказывается, способны более точно регулировать поток. В работе, опубликованной в 2019 году, авторы отследили движение питательных веществ и сигнальных соединений по гифам в режиме реального времени. В определенных больших гифах поток клеточной жидкости каждые несколько часов менял направление, позволяя таким образом потоку сигнальных соединений и питательных веществ двигаться по сети в обе стороны. Примерно в течение трех часов поток двигался в одном направлении. В последующие три часа поток устремлялся в противоположную сторону. Как гифам удается контролировать поток материи внутри их, неизвестно, но благодаря ритмичному изменению направления клеточного потока вещества распределяются по сети более эффективно. Авторы высказывают предположение, что скоординированное открывание и закрывание гифовых пор является «основным фактором» в управлении двунаправленным потоком по транспортным гифам (Schmieder et al.) [2019], см. также комментарии Roper and Dressaire [2019]). «Сжимающиеся вакуоли» (сontractile vacuoles) являются еще одним способом, который грибы могут использовать для направления потока внутри себя. Вакуоли представляют собой трубки внутри гиф, по которым могут проходить волны сокращений и которые, как сообщалось, играют определенную роль в транспортировке веществ по мицелиевым сетям (Shepherd et al. [1993], Rees et al.) [1994], Allaway and Ashford [2001], и Ashford and Allaway [2002]).
как иронично заметил один из исследователей: Roper et al. (2013), Hickey et al. (2016), и Roper and Dressaire (2019). Следующие видео можно посмотреть на YouTube: “Nuclear dynamics in a fungal chimera” (www.youtube.com/watch?v=_FSuUQP_BBc); “Nuclear traffic in a filamentous fungus” (www.youtube.com/watch?v=AtXKcro5°30).
в сотни раз интенсивнее: Cerdá-Olmedo (2001) и Ensminger (2001), ch. 9.
но это еще предстоит доказать: о «самом умном» см.: Cerdá-Olmedo (2001); о реакции избегания см.: Johnson and Gamow (1971) и Cohen et al. (1975).
разновидностей «других»: свет влияет на многие аспекты жизни мицелия, от развития плодовых тел до создания взаимоотношений с другими организмами – пугающий всех патогенный грибок рисовой гнили заражает свои жертвы только ночью, Deng et al. [2015]). О восприятии света у грибов см.: Purschwitz et al (2006), Rodriguez-Romero et al (2010)), и Corrochano and Galland (2016)); о восприятии поверхностной топографии см.: Hoch et al. (1987) Brand and Gow (2009); о восприятии силы земного притяжения см.: Moore (1996), Moore et al. (1996), Kern (1999), Bahn et al. (2007), и Galland (2014).
хоть сколько-то напоминающим мозг: Darwin and Darwin (1880), с. 573. Об аргументах в пользу гипотезы «корневого мозга» см.: Trewavas (2016), а также Calvo Garzón and Keijzer (2011); об аргументах против аналогий с мозгом см.: Taiz et al (2019); с введением в дебаты по поводу «интеллекта растений» можно ознакомиться в Pollan, “The Intelligent Plant” (2013).
одновременно и в больших количествах: о поведении кончиков гиф см.: Held et al. (2019).
такой быстрый перенос информации по сети грибницы: о магических, или ведьминых, кругах см.: Gregory (1982).
других немногих возможностей, а именно электричество: некоторые исследователи сообщали о внезапных сокращениях гиф, или подергиваниях, которые могли использоваться для передачи информации. Однако эти сокращения недостаточно регулярны, чтобы использоваться на постоянной основе. См.: McKerracher and Heath (1986a and 1986b), Jackson and Heath (1992), и Reynaga-Peña and Bartnicki-García (2005). Некоторые ученые предполагают, что информация может передаваться по мицелиевым сетям посредством изменения алгоритмов потока внутри сети, при этом его направление может иногда изменяться при помощи ритмических колебаний (Schmieder et al.) [2019] и Roper and Dressaire [2019]). Это вполне перспективное исследовательское направление, и, возможно, будет полезно воспринимать мицелиевые сети как своего рода «жидкие компьютеры», многочисленные версии которых созданы и применены в различных системах контроля – от истребителей до атомных реакторов (Adamatzky [2019]). Однако изменения в потоке в грибнице все еще происходят слишком медленно, чтобы объяснить многие явления. Вполне возможно, что регулярная пульсация, вызванная метаболической деятельностью, проходящая по мицелиевым сетям, служит грибницам для координации своих действий по всей сети, и все же эти импульсы слишком замедленны, чтобы объяснить многие феномены (Tlalka et al.) [2003, 2007], Fricker et al.) [2007a и 2007b, и 2008]). Образцовым организмом для объяснения жизнедеятельности сетей являются решающие головоломки слизевики. Хотя их нельзя считать грибами, слизевики выработали в процессе своей эволюции способы координировать поведение своих расползающихся, меняющих очертания тел и очень полезны в качестве модели для понимания трудностей, с которыми сталкиваются мицелиевые грибы, и возможностей, которые у них появляются. Благодаря тому, что они растут быстрее, чем грибницы, их проще изучать. Слизевики общаются с различными частями своих тел, посылая ритмические импульсы, прокатывающиеся по ответвлениям их сетей волнами сокращений. Ответвления, обнаружившие еду, выделяют сигнальную молекулу, которая усиливает сокращения. Более интенсивные сокращения увеличивают объем клеточного потока, проходящего именно по этому отростку сети. С каждым сокращением по более короткому пути будет проходить больше вещества, чем по более длинному. Чем больше вещества проходит по конкретному отрезку сети, тем больше он укрепляется. Именно цикл обратной связи позволяет организму перестраиваться, устремляясь по «более перспективным» путям за счет «менее перспективных» маршрутов. Импульсы, исходящие из разных частей сети, объединяются, влияют друг на друга и усиливают друг друга. Таким образом слизевики способны интегрировать информацию, поступающую из разных частей их тел, и решать сложные проблемы маршрутизации, обходясь без какого-либо особого места для этого (Zhu et al.) [2013], Alim et al. [2017], и Alim [2018]).
важную роль в жизни грибов: в середине 1980-х один из исследователей заметил, что «грибная электробиология – это самое радикальное отступление от традиционной биологии, на которое могут решиться современные исследователи» (Harold et al. 1985). С тех пор, тем не менее, было обнаружено, что грибы реагируют на стимуляцию электричеством удивительным образом. Обработка мицелия ударами электрического тока может существенно увеличить урожай грибных плодовых тел (Takaki et al.) [2014]). Урожаи чрезвычайно ценных грибов мацутаке – вида микоризных грибов, которые до сих пор не удавалось выращивать на плантациях, – могут практически удвоиться, если через землю вокруг их партнеров-деревьев пропустить заряды электричества в 50 киловольт. Исследователи провели этот эксперимент после рассказов грибников о том, что небывалое количество грибов мацутаке вырастает вокруг того места, в которое попала молния, через несколько дней после ее удара (Islam and Ohga [2012]). О биоэлектрических потенциалах у растений см.: Brunet and Arendt (2015); первые сообщения о биоэлектрических потенциалах у грибов можно найти у Slayman et al. (1976); общие сведения о грибной электрофизиологии можно найти у Gow and Morris (2009); о «кабельных бактериях» см.: Pfeffer et al. (2012); о волнах активности, подобных биоэлектрическим потенциалам, можно прочесть у Prindle et al. (2015), Liu et al. (2017), Martinez-Corral et al. (2019) и в резюме Popkin (2017).
пищей для этого вида: Олссон оценил скорость прохождения сигнала, измерив время между стимуляцией и реакцией на нее. Таким образом этот показатель учитывает время, которое а) требуется грибу, чтобы ощутить стимуляцию; б) требуется сигналу, чтобы пройти из точки А в точку B; в) требуется на то, чтобы зарегистрировать реакцию микроэлектродами. То есть фактическая скорость может быть куда выше измеренной. Насколько известно, максимальная скорость потока внутри грибного мицелия в целом – 180 мм/ч (Whiteside et al. [2019]). Олссон показал, что импульс, подобный потенциалу действия, проходит со скоростью 1800 мм/ч.
«других существ вокруг него»: Olsson and Hansson (1995) и Olsson (2009). Сделанную Олссоном запись изменений в активности, подобной биоэлектрическим потенциалам, можно найти на doi.org/10.6084/m9.figshare.c.4560923.v1 [дата обращения 29 октября 2019].
использовал ее в качестве метафоры: Oné Pagán указывает на то, что общепринятого определения мозга не существует. Он утверждает, что логичнее давать определение мозгу, описывая его активность, нежели конкретные особенности его анатомии (Pagán [2019]). Об управлении порами в грибных сетях см.: Jedd and Pieuchot (2012), Lai et al. (2012).
в грибной компьютер: Adamatzky (2018a, 2018b).
«сетевым» организмам: примеры вычислительной деятельности сети можно найти у van Delft et al. (2018) и Adamatzky (2016).
к которым они чувствительны: Adamatzky (2018a, 2018b).
«если это окажется правильным»: я спросил у Олссона, почему никто не продолжил его исследований с 1990-х годов. «Когда я сделал доклад на конференции, моя работа действительно заинтересовала очень-очень многих, – ответил он. – Но они считали ее странной». Все исследователи, которых о его работе спрашивал я, были увлечены его идеями и хотели узнать о его работе больше. С момента доклада его работу цитировали уже много раз. Но добиться финансирования на продолжение своей работы в этой области Олссон так и не смог. Считалось, что его работа, скорее всего, ни к чему не приведет – используя официальную формулировку, она была «слишком рискованной».
задолго до того, как мозг стал таким, каким мы его знаем: по поводу «архаичного мифа» читайте Pollan (2013); о древних клеточных процессах, лежащих в основе мозговой деятельности, читайте работу Manicka and Levin (2019). «Гипотеза движения» утверждает, что мозг развился как причина и следствие того, что у животных появилась необходимость перемещаться с места на место. Организмы, остающиеся на одном месте, не сталкиваются с таким типом проблем, и, соответственно, у них развились системы другого рода для разрешения сложностей, которые встают перед ними (Solé et al. [2019]).
все, что нужно: высказывание Darwin (1871), приводимое Trewavas (2014), ch. 2. О «минимальном познании» см.: Calvo Garzón and Keijzer (2011); о «биологически воплощенном познании» см.: Keijzer (2017); о сознании растений см.: Trewavas (2016); о познании «базальных ядер» и степеней познания читайте Manicka and Levin (2019); обсуждение микробиологического интеллекта можно найти у Westerhoff et al. (2014); информация о разных типах «мозга» приводится в работе Solé et al. (2019).
гибко перестраивающихся нейронов: о «сетевой неврологии» см.: Basset and Sporns (2017) и Barbey (2018). Научные достижения, позволяющие выращивать культуры тканей головного мозга в лабораторных условиях – известные как «органоиды» мозга, – еще больше усложняют наше восприятие понятия «интеллект». Философские и этические вопросы, поднятые этими технологиями – и отсутствие четких ответов, – являются напоминанием о том, что в определении границ нашего собственного биологического Я ясность тоже отсутствует. В 2018 году несколько ведущих неврологов и биоэтиков опубликовали статью в журнале Nature, в которой они рассматривали некоторые из этих вопросов (Farahany et al. [2018]). В грядущие десятилетия достижения в выращивании тканей головного мозга позволят создать искусственный «минимозг», который будет более точно имитировать работу человеческого головного мозга. Авторы пишут, что «по мере того, как суррогатный мозг будет становиться больше и сложнее, возможность того, что у него появится способность ощущать и разумность, сходные с человеческими, станет все ближе. Среди них, возможно, будут и такие, как способность испытывать удовольствие, боль или отчаяние; способность хранить и восстанавливать воспоминания; или, вероятно, способность ощущать и воспринимать себя как индивидуальность». Некоторых ученых беспокоит мысль о том, что эти органоиды мозга когда-нибудь могут оказаться умнее нас (Thierry [2019]).
тянуться и хватать: об эксперименте с плоскими червями см.: Shomrat and Levin (2013); о нервной системе осьминогов см.: Hague et al. (2013) и Godfrey-Smith (2017), гл. 3.
катастрофические глобальные изменения: Bengtson et al. (2017) и Donoghue and Antcliffe (2010). С нарочитой осторожностью Bengston и его коллеги указывают на то, что их образцы, возможно, и не являются в действительности грибами, но могут относиться к семейству древних организмов, всеми своими явными проявлениями напоминающих современные грибы. Можно понять их нерешительность. Авторы заявляют, что если бы эти окаменелости действительно оказались грибами, они бы полностью перевернули наше нынешнее представление о том, где и как появились первые грибы. Грибы плохо сохраняются и превращаются в ископаемые, и до сих пор идут споры о том, когда именно грибы впервые ответвились от древа жизни. Методы, основанные на анализе ДНК – использующие так называемые «молекулярные часы», – позволяют предположить, что впервые грибы отклонились в своем развитии от древа жизни около миллиарда лет назад. В 2019 году исследователи сообщили об обнаружении окаменелого мицелия, которому было около миллиарда лет, в арктическом сланце (Loron et al. [2019] и Ledford [2019]). Более ранним грибным окаменелостям, согласно анализу, порядка 450 миллионов лет (Taylor et al. [2007]). Самым ранним окаменелостям грибов с гимениальными пластинами примерно 120 миллионов лет (Heads et al.) [2017]).
бесконечно перестраивают себя: о Барбаре МакКлинток (Barbara McClintock) см.: Keller (1984).
понять: там же.
одного из старейших лабиринтов жизни: Александр Гумбольдт (Humboldt) (1849), т. 1, стр. 20.

 

Глава 3. БЛИЗОСТЬ НЕЗНАКОМЦЕВ
говоря «мы»: Rich (1994).
«получим назад наши образцы»: BIOMEX – один из нескольких астробиологических проектов. О BIOMEX см.: de Vera et al. (2019); О платформе EXPOSE см.: Rabbow et al. (2009).
«ограниченности земных форм жизни»: цитату «границ возможностей и ограниченности земных форм жизни» можно найти у Sancho et al. (2008); обзор организмов, отправленных в космос, включая лишайники, см.: Cottin et al. (2017); о лишайниках как о модельных организмах для астробиологических исследований читайте в работе Meeβen et al. (2017) и de la Torre Noetzel et al. (2018).
нельзя понять, изолировав их от всего остального: Wulf (2015), ch. 22.
по отдельности никто из них не выжил бы: о Швенденере и гипотезе двойственности (о «полезном и дающем силы паразитизме») см.: Sapp (1994), ch. 1.
«не верим в теорию Швенденера»: Sapp (1994), ch. 1; о «сенсационном романе» см.: Ainsworth (1976), ch. 4. Некоторые из биографов Беатрис Поттер предполагали, что она была сторонницей гипотезы двойственности Швенденера, но со временем, вероятно, изменила свое к ней отношение. Тем не менее в 1897 году в письме к Чарльзу Макинтошу, сельскому почтальону и натуралисту-любителю, она четко сформулировала свою позицию в этом вопросе: «Видите ли, мы не верим в теорию Швенденера, а в более старых книгах говорится, что лишайники постепенно перерождаются в перелеску благородную через листовидные разновидности. Мне бы очень хотелось вырастить спору одного из этих больших плоских лишайников, а также спору настоящей перелески, чтобы сравнить два вида прорастания. Названия неважны. Я могу их засушить. Если бы Вам удалось добыть для меня еще спор лишайника и перелески, когда изменится погода, я была бы Вам очень обязана» (Kroken [2007]).
совершенно неожиданное: они сходились: дерево – один из основополагающих образов в современных теориях эволюции и, как известно, единственная иллюстрация в работе Дарвина «О происхождении видов». Дарвин ни в коем случае не был первым, кто использовал этот образ. Веками ветвящаяся форма дерева придавала упорядоченности и наглядности человеческой мысли в различных областях – от теологии до математики. Лучше всего, вероятно, всем знакомы генеалогические древа, уходящие корнями в Ветхий Завет (Древо Иессеево).
отношений на противоположном конце: с дебатами по поводу изображения Швенденером лишайников можно познакомиться у Sapp (1994), ch. 1, и Honegger (2000); об Альберте Франке и симбиозе см.: Sapp (1994), ch. 1, Honegger (2000) и Sapp (2004). Сначала Франк использовал слово simbiotismus, «симбиотизм».
описал их как «микролишайники»: предки зеленых морских слизней (зеленых морских огурцов) – Elysia viridis – поглощали водоросли, продолжавшие жить в их тканях. Зеленые морские слизни получают энергию из солнечного света так же, как и растения. О новых симбиотических открытиях читайте работу Honegger (2000); о «животных-лишайниках» см.: Sapp (1994), ch. 1; о «микролишайниках» читайте работу Sapp (2016).
сотрудничества между природными царствами: цитату из Хаксли ищите у Sapp (1994), p. 21.
«выглядят как сказочные персонажи»: приблизительная оценка – 8 % площади земли, покрытой лишайниками, приводится Ahmadjian (1995); о территории, превышающей площадь тропических лесов, см.: Moore (2013a), ch. 1; образ «подвешены в хэштегах» (“hung in hashtags”) можно найти у Hillman (2018); о разнообразии ареалов обитания лишайников, включая блуждающие лишайники и лишайники, живущие на насекомых, читайте работу Seaward (2008); интервью с Knudsen можно найти на aeon.co/videos/how-lsd-helped-a-scientist-find-beauty-in-a-peculiar-and-overlooked-form-of-life [дата обращения с 29 октября 2019].
«консистенции глины»: цитату «каждый памятник» (every monument) можно найти на twitter.com/GlamFuzz [29 октября 2019]; о горе Рашмор см.: Perrottet (2006); о гигантских головах с острова Пасхи можно узнать на www.theguardian.com/world/2019/mar/01/easter-island-statues-leprosy [дата обращения 29 октября 2019].
смогли сформироваться новые почвы: о подходах лишайников к выживанию см.: Chen et al. (2000), Seaward (2008) и Porada et al. (2014); о лишайниках и формировании почвы см.: Burford et al. (2003).
создавали новую жизнь: об истории панспермии и связанных с ней идеях см.: Temple (2007) и Steele et al. (2018).
сегодня известна как астробиология: в ответ на опасения Ледерберга о возможности межпланетного заражения NASA разработала способы стерилизации космического корабля перед его стартом с Земли. Полной дезинфекции, однако, добиться не удалось: на борту Международной космической станции процветает популяция добровольцев-бактерий и грибов (Novikova et al. [2006]). Когда в 1969 году после первого полета на Луну «Аполлон 11» вернулся на Землю, космонавтов поместили в строжайший карантин на три недели в специально переоборудованный трейлер (Scharf [2016]).
по несколько часов в день: после исследований, проведенных Фредериком Гриффитсом в 1920-х годах, результаты которых были подтверждены позднее, в начале 1940-х, Освальдом Эйвери и его коллегами, стало известно, что бактерии способны получать ДНК из окружающей их среды. То, что продемонстрировал Джошуа Ледерберг, было способностью бактерий активно обмениваться друг с другом генетическим материалом – процесс, известный как конъюгация. О результатах исследований Ледерберга см.: Lederberg (1952), Sapp (2009), ch. 10, и Gontier (2015b). Вирусные ДНК имели и имеют глубочайшее влияние на жизнь представителей царства животных: считается, что вирусные гены сыграли ключевую роль в эволюционном отделении плацентарных млекопитающих от их яйцекладущих предков (Gontier [2015b] и Sapp [2016]).
во всех сферах жизни: ДНК бактерий обнаруживают в геномах животных (общую информацию можно найти у Yong [2016], ch. 8). ДНК бактерий и грибов находят в геномах растений и водорослей (Pennisi [2019a]). ДНК грибков обнаруживают в формирующих лишайники водорослях (Beck et al. [2015]). Передача генов по горизонтали распространена среди грибов (Gluck-Thaler and Slot [2015], Richards et al. [2011] и Milner et al. [2019]). По крайней мере 8 % человеческого генома началось с вирусов (Horie et al. [2010]).
потенциально катастрофичечкими последствиями: о «резком ускорении» эволюции на Земле из-за попадания на планету чужеродных ДНК см.: Lederberg and Cowie (1958).
в пределах 24 часов: о враждебности условий открытого космоса см.: de la Torre Noetzel et al. (2018).
«некоторую степень биологической активности»: Sancho et al. (2008).
без каких-либо видимых проблем: даже после облучения 18 килогреями гамма-радиации у образцов лишайника Circinaria gyrosa только сократилась способность к фотосинтезу на 70 %. После гамма-облучения 24 килогреями фотосинтез сократился на 95 %, но полностью способность к нему не была утрачена (Meeβen et al. [2017]). Если рассматривать эти результаты в контексте устойчивости к радиации, то одними из наиболее выносливых организмов, когда-либо изученных, является архея (с чрезвычайно подходящим названием – Thermococcus gammatolerans), извлеченная из глубоководных гидротермальных ключей, которая может выдержать гамма-излучение в 30 килогреев (Jolivet et al. [2003]). Резюме космических исследований лишайников см.: Cottin et al. (2017), Sancho et al. (2008) и Brandt et al. (2015); о воздействии высоких доз радиации на лишайники см.: Meeβen et al. (2017), Brandt et al. (2017) и de la Torre et al. (2017); о тихоходках в космосе см.: Jönsson et al. (2008).
«Они просвещают нас»: некоторые дисциплины регулярно «получают информацию» от лишайников. Лишайники настолько чувствительны к некоторым формам промышленного загрязнения, что их используют в качестве индикаторов чистоты воздуха (лихеноиндикация): «лишайниковые пустыни» распространяются с подветренной стороны от городской территории и могут быть использованы для картирования загрязненных индустриальными выбросами зон. В некоторых случаях лишайники служат индикаторами практически в буквальном смысле слова. Геологи используют их для определения возраста скальных образований (дисциплина, известная как лихенометрия). И лакмус, чувствительный к pH краситель для изготовления индикаторной бумаги – которую можно найти во всех школьных химических кабинетах, – для определения кислотности и щелочности среды, тоже получается из лишайника.
где происходит фотосинтез: недавние исследования, проведенные Thijs Ettema и его группой в Уппсальском университете, позволяют предположить, что эукариоты зародились внутри архей. Точная последовательность этапов развития остается весьма спорной (Eme et al. [2017]). Очень долго считалось, что у бактерий отсутствуют внутриклеточные структуры – органеллы. Сейчас это мнение меняется. Оказывается, что у многих бактерий существуют органеллоподобные структуры, специализирующиеся на конкретных функциях. Обсуждение этого вопроса можно найти у Cepelewicz (2019).
«близость незнакомцев»: Margulis (1999); Mazur (2009), “Intimacy of Strangers and Natural Selection”.
внутри которых тоже живут бактерии: о «слиянии и поглощении» см.: Margulis (1996); об истоках эндосимбиоза см.: Sapp (1994), chs. 4 and 11; цитату Stanier (Станье) см.: Sapp (1994), p. 179; о «теории серийного эндосимбиоза» см.: Sapp (1994), p. 174; о бактериях, живущих внутри бактерий, обитающих внутри насекомых, см.: Bublitz et al. (2019); чтобы найти оригинальную статью Margulis (подписанную именем Sagan) см.: Sagan (1967).
«…сумма составных частей»: цитату «вполне аналогичным (лишайникам)» ищите у Sagan (1967); цитату «поразительные примеры» см.: Margulis (1981), p. 167. Для de Bary в 1879 году наиболее значимым следствием симбиоза могла быть возможность появления в результате его эволюционно новых организмов (Sapp [1994], p. 9). Первые российские сторонники теории симбиоза, Константин Мережковский (1855–1921) и Борис Михайлович Козо-Полянский (1890–1957), назвали процесс, посредством которого симбиоз мог привести к появлению новых видов, симбиогенезом (то есть «становлением благодаря сосуществованию») (Sapp [1994], pp. 47–48). Козо-Полянский несколько раз упоминает в своей работе лишайники. «Не следует считать, что лишайники представляют собой результат сложения определенных водорослей и грибов. Скорее они обладают множеством своеобразных характеристик, которые нельзя обнаружить ни у грибов, ни у водорослей… везде – в их химическом составе, их форме, структуре, образе жизни и распространении – сложносоставные лишайники демонстрируют новые черты, не свойственные по отдельности составляющим их видам» (Kozo-Polyansky trans. [2010], pp. 55–56).
«…биологии XX столетия»: цитаты Докинза (Dawkins) и Деннетта (Dennett), помимо прочих, можно найти у Margulis (1996).
объединяются путем анастомоза, как грибные гифы: «Мне кажется, метафора “эволюционное древо жизни” не совсем верна, – заметил генетик Ричард Левонтин (Richard Lewontin [2001]). – Быть может, сравнение с замысловатым и сложным плетением макраме подойдет больше». Это не совсем справедливо по отношению к деревьям. Ветви некоторых видов могут сливаться друг с другом. Процесс этот известен как иноскуляция, от латинского слова osculare, означающего «целовать». Но взгляните на ближайшее к вам дерево. Скорее всего, оно больше ветвится, чем сливается ветвями. Ветви большинства деревьев не похожи на грибные гифы, для которых ежедневное слияние друг с другом – обычное дело. Вопрос, подходит ли сравнение с деревом для описания эволюционного развития, обсуждается много десятилетий. Дарвин сам беспокоился о том, что образ «коралла жизни» мог бы подойти лучше, хотя под конец он решил, что использование такой метафоры «чрезвычайно все усложнит» (Gontier [2015a]). В 2009 году, во время одного из самых высоких всплесков желчности по отношению к вопросу о древе жизни, журнал New Scientist вышел в обложке, на которой провозглашалось: «Дарвин ошибался». «Вырвем с корнем древо (“Uprooting Darwin’s tree”) Дарвина», – крикливо заявлял заголовок редакторской статьи. Как и следовало ожидать, все это вызвало яростную реакцию (Gontier [2015a]). Среди бури протестов выделяется письмо, посланное в редакцию Дэниелом Деннеттом (Daniel Dennett): «Да о чем же вы думали, выпуская эту аляповатую обложку, провозглашающую, что “Дарвин ошибался”?..» Можно понять, что вызвало такое сильное раздражение у Деннетта. Дарвин не ошибался. Просто он выдвинул свою теорию эволюции до того, как стало известно о существовании ДНК, генов, симбиотических слияний и передаче генов по горизонтали. Эти открытия преобразили наше восприятие истории жизни. Но основной тезис Дарвина о том, что эволюция идет путем естественного отбора, не ставится под сомнение – хотя оспаривается степень влияния естественного отбора на эволюционный процесс в качестве основной движущей силы (O’Malley [2015]). Симбиоз и передача генетического материала по горизонтали стали источниками зарождения новых видов; они стали новыми соавторами эволюции. Но естественный отбор по-прежнему выступает в роли редактора. Тем не менее в свете симбиотических объединений и горизонтальной передачи генов многие биологи начали переосмысливать образ древа жизни, заменяя его образом сложной сетчатой структуры, образуемой по мере того, как родовые линии разветвляются, сливаются и переплетаются друг с другом. «Сетчатая система», или «паутина», «сеть», «ризома», или «корневище», или «паутинка» (Gontier [2015a] и Sapp [2009], ch. 21). Линии на этих диаграммах сплетаются в узлы и растворяются друг в друге, объединяя разные виды, царства и даже домены жизни. Связующие петли вытягиваются из мира вирусов, генетических сущностей, даже не воспринимаемых как живые существа, и снова уходят внутрь его. Если понадобится новый образцовый организм для эволюционной метафоры, его не придется долго искать. Такое представление о жизни больше всего напоминает грибной мицелий, или грибницу.
заново построить отношения: у некоторых лишайников образуются специализированные рассеивающие структуры, называемые соредиями, которые состоят из грибковых и водорослевых клеток. В некоторых случаях только что проросший лишайниковый грибок может войти в партнерство с каким-нибудь фикобионтом, который не совсем удовлетворяет его потребности и сохраняется как маленький «фотосинтетический комок», или предслоевище, пока не образуется настоящее слоевище (Goward [2009c]). Некоторые лишайники могут разделяться на составляющие и вновь собираться, не образуя спор. Если определенные виды лишайника поместить в чашку Петри и создать нужные условия питания, партнеры разъединятся и расползутся в стороны. После разделения они могут воссоздать свои партнерские отношения (хотя обычно и не в лучшей форме). В этом смысле лишайники обратимы, или реверсивны. По крайней мере, в некоторых случаях мед можно отделить от каши. До сих пор, однако, только в случае с единственным лишайником – Endocarpon pusillum – удалось разделить партнеров, вырастить их отдельно друг от друга и воссоединить опять, пройдя все стадии формирования и развития лишайника, включая и производство вполне функциональных спор – процесс, известный как повторный синтез “от споры до споры”» (Ahmadjian and Heikkilä [1970]).
«…самих лишайников вы не видите»: симбиотическая природа лишайников вызывает несколько любопытных технических проблем. Лишайники уже давно стали маленьким кошмаром для таксономистов и классификаторов. Так сложилось, что лишайникам дают названия по именам их грибных партнеров. К примеру, лишайник, возникающий из взаимодействия грибка Xanthoria parietina (ксантория настенная) и водоросли Trebouxia irregularis (требуксия нерегулярная), известен как Xanthoria parietina. Подобным же образом сочетание гриба Xanthoria parietina и водоросли Trebouxia arboricola (требуксия древовидная) тоже известно под названием ксантория настенная (Xanthoria parietina). Названия лишайников – синекдохи в том смысле, что они обозначают целое названием части (Spribille [2018]). Существующая в настоящее время система подразумевает, что грибковый компонент лишайника и есть сам лишайник. Но это в корне неверно. Лишайники возникают из договоренностей, достигнутых между несколькими партнерами. «Воспринимать лишайник как гриб, – сетует Goward, – значит не увидеть лишайника вообще» (Goward [2009c]). Это как если бы химики называли любое содержащее углерод соединение – от алмазов до метана и метамфетамина – углеродом. Пришлось бы, вероятно, признать, что они кое-что упускают из виду. Это не просто ворчание на тему семантики. Дать чему-то название – значит признать его существование. Когда обнаруживают новый вид, его описывают и дают ему название. А у лишайников действительно есть свои имена, множество имен. Лихенологи не практикуют аскетизм при классификации видов. Просто единственные имена, которые они могут использовать, отскакивают, не задевая его, от явления, которое они стремятся описать. Это структурный вопрос. Биология опирается на систему классификации, или таксономическую систему, которая никоим образом не может признать симбиотического статуса лишайников. Они буквально безымянные.
миры, уменьшенные в размерах: Sancho et al. (2008).
после регидратации через 30 дней: de la Torre Noetzel et al. (2018).
метаболическое наследие этих отношений: об уникальных соединениях в лишайниках и их использовании человеком см.: Shukla et al. (2010) и в публикации State of the World’s Fungi (2018); о метаболическом наследии лишайниковых отношений см.: Lutzoni et al. (2001).
уже тысячи лет: сообщения о находках ученых из Глубинной углеродной обсерватории можно прочитать у Watts (2018).
уже более 9000 лет: о лишайниках в пустыне см.: Lalley and Viles (2005) и “State of the World’s Fungi” (2018); о лишайниках внутри камней см.: de los Ríos et al. (2005) и Burford et al. (2003); о Сухих долинах Мак-Мердо (бесснежных долинах антарктических оазисов) см.: Sancho et al. (2008); о жидком азоте см.: Oukarroum et al. (2017); о долголетии лишайников см.: Goward (1995).
более подходящие для межпланетных путешествий: Sancho et al. (2008).
никаких абсолютно живых клеток: об ударе при выбросе с планеты см.: Sancho et al. (2008), Cockell (2008). В ряде исследований было доказано, что бактерии более устойчивы к воздействию высокими температурами и ударным давлением, чем лишайники. О повторном вхождении в атмосферу см.: Sancho et al. (2008).
вопрос остается открытым: Sancho et al. (2008) и Lee et al. (2017).
в зависимости от обстоятельств: о происхождении лишайников см.: Lutzoni et al. (2018) и Honegger et al. (2012). Идет очень много споров по поводу идентификации древних лишайникоподобных окаменелостей и их принадлежности к сохранившимся разновидностям лишайников. Были обнаружены подобные лишайникам морские организмы, которым уже 600 миллионов лет (Yuan et al. [2005]), и некоторые ученые утверждают, что эти морские лишайники сыграли роль в миграции предков лишайников на сушу (Lipnicki [2015]). О многократном эволюционном развитии лишайников и повторной лихенизации см.: Goward (2009c); о делихенизации см.: Goward (2010); о дополнительной лихенизации см.: Selosse et al. (2018).
в обществе друг друга: Hom and Murray (2014).
симбиотического образа жизни: о «песне, а не певце» см.: Doolittle and Booth (2017).
вполне могли бы быть другими планетами: Hydropunctaria Maura («полночь в брызгах воды») была раньше известна как Verrucaria maura («пупырчатая полночь»). Информацию о долгосрочном изучении зарождения лишайников на только что появившемся острове читайте в истории острова Сюртсей: www.anbg.gov.au/lichen/case-studies/surtsey.html [дата обращения 29 октября 2019].
не только существительное, но и глагол: о «едином целом» и «наборе составляющих частей» см.: Goward (2009a).
столетия пристального наблюдения: Spribille et al. (2016).
«одного гриба и одной водоросли»: о грибном разнообразии внутри лишайников см.: Arnold et al. (2009); о дополнительных партнерах волчьего лишайника см.: Tuovinen et al. (2019), Jenkins and Richards (2019).
что представляют собой живые организмы: по пoводу «Неважно, как вы их назовете» см.: Hillman (2018). Goward сформулировал определение лишайников, которое учитывает эти недавние изыскания: «Долговечный физический побочный продукт лихенизации, определяемый как процесс, посредством которого система, состоящая из любого числа грибных, водорослевых и бактериальных таксонов, создает таллус [одно, общее на всех, тело лишайника], рассматриваемый как только что возникшая собственность всех его составляющих» (Goward 2009b).
сгусток в лабораторной чашке: о лишайниках как о резервуарах микробов см.: Grube et al. (2015), Aschenbrenner et al. (2016) и Cernava et al. (2019).
«нам сложно соотнести себя с ними»: о теории странности/нетрадиционности, предложенной для лишайников, см.: Griffiths (2015).
Или, вернее, всех вас: См.: Gilbert et al. (2012) для более подробной информации о том, как микроорганизмы вносят сумятицу в самые разные определения биологической индивидуальности. Дальнейшую информацию о микробах и иммунитете можно найти у McFall-Ngai (2007) и в работе Lee and Mazmanian (2010). Некоторые ученые предлагают альтернативные определения биологических индивидов на основе «общей судьбы» жизненной системы. Например, Frédéric Bouchard предлагает следующую формулировку: «Биологический индивид – это функционально интегрированная сущность, чья интеграция связана общей судьбой с системой, когда окружающая их среда подвергает их жесткому отбору» 2018).
что они действительно существуют: Gordon et al. (2013); Bordenstein and Theis (2015).
полны трениями и конфликтами: об инфекциях, вызываемых кишечными бактериями, см.: Van Tyne et al. (2019).
«Мы все лишайники»: Gilbert et al. (2012).
Глава 4. МИЦЕЛИЕВОЕ СОЗНАНИЕ
и мне отвечают: Maria Sabina, из записи, сделанной Gordon Wasson и процитированной в работе Schultes et al. (2001), p. 156.
границ своего Я: краткое резюме клинических исследований психоделиков см.: Winkelman (2017); расширенную информацию и подробности ищите у Pollan (2018).
действующие как растяжки на войне: Hughes et al. (2016).
на главной жилке: о высоте, на которой совершается смертельный захват, и о времени, когда это происходит, см.: Hughes et al. (2011) и у Hughes (2013); об ориентировании грибом насекомых см.: Chung et al. (2017). Существует много разновидностей кордицепса (Ophiocordyceps) и муравьев-древоточцев, но каждая из разновидностей муравьев-древоточцев становится жертвой только одной разновидности кордицепса, и каждая разновидность гриба может контролировать только одну разновидность муравьев-древоточцев (de Bekker et al. [2014]). В своем определении места смерти различные грибо-муравьиные пары крайне разборчивы. Некоторые грибы заставляют своих насекомых-аватаров впиваться своим предсмертным укусом в сучья, другие – в кору, а третьи – в листья (Andersen et al. [2009] и Chung et al. [2017]).
над поведением муравьев: о соотношении массы гриба в биомассе муравьиного тела см.: Mangold et al. (2019); визуализацию грибницы внутри муравьиных тел см.: Fredericksen et al.
управлении поведением муравьев: гипотезу о том, что грибы манипулируют поведением муравьев при помощи определенных химических веществ, см.: Fredericksen et al. (2017); о химических соединениях, вырабатываемых кордицепсом (Ophiocordyceps), см.: de Bekker et al. (2014); о кордицепсе и алкалоидах спорыньи (Ophiocordyceps and ergot alkaloids) читайте работу Mangold et al. (2019).
сознание, которым можно было управлять: об окаменелостях листьев со шрамами от укусов муравьев см.: Hughes et al. (2011).
примерно в равной мере: цитату McKenna читайте в работе Letcher (2006), p. 258.
культурными традициями и духовными обрядами: Schultes et al. (2001), p. 9. Обширное, хотя иногда и некритичное обсуждение интоксикации в мире животных см.: Siegel (2005) и Samorini (2002).
конвульсии, спровоцированные эрготизмом: рассуждения о мухоморе красном (Amanita muscaria) см.: Letcher (2006), chs. 7–9. Некоторые исследователи выдвигают гипотезу о том, что обвинители во время судов над ведьмами в Салеме страдали от конвульсий, вызванных отравлением алкалоидами спорыньи (Caporael [1976] и Matossian [1982]), хотя против их доводов энергично выступили со своими контраргументами Spanos и Gottlieb (1976). Считается, что вызванные эргоцизмом видения и душевные страдания и муки, известные в Средние века и эпоху Возрождения как «огонь святого Антония», послужили источником вдохновения при изображении Ада современниками этих событий. О Босхе и его творчестве см.: Dixon (1984). Домашний скот также подвержен отравлению спорыньей. «Сонная трава», «пьяная трава» и «плевел-шатун» – все эти названия отражают воздействие алкалоидов спорыньи на крупный рогатый скот, лошадей и овец (Clay [1988]). Спорынья обладает также сильным лечебным действием и сотнями лет использовалась повитухами для остановки послеродового кровотечения. Генри Уэлком, предприниматель, на чьи пожертвования был основан Wellcome Trust, изучал сообщения о терапевтическом действии спорыньи, гриба-паразита зерновых. Он сделал запись о том, что повитухи Шотландии, Германии и Франции XVI века считали, что спорынья «обладает замечательной и несомненной действенностью» для вызывания сокращений утробы (матки) и прекращения кровотечения после родов. Именно от таких травниц и повитух мужчины-врачи узнали о терапевтических свойствах спорыньи, на которых основано лечебное действие эргометрина, все еще используемое в наши дни для прекращения особенно сильных послеродовых кровотечений (Dugan [2011], pp. 20–21). Именно благодаря ее доброй славе среди гинекологов Альберт Хофман начал изучать спорынью в Sandoz Laboratories в 1930-х в рамках исследовательской программы, которая привела к синтезу ЛСД в 1938 году. Рассуждения об алкалоидах спорыньи, их истории и применении см.: Wasson et al. (2009) “A Challenging Question and My Answer”.
описаний употребления грибов: информацию об истории применения псилоцибиновых грибов в Мексике см.: Letcher (2006), ch. 5; Schultes (1940); и Schultes et al. (2001), “Little Flowers of the Gods.” Цитату из труда Бернардино де Саагуна (Sahagún) см.: Schultes (1940).
украшенные перьями божества, поедающие грибы и поднимающие их вверх: Letcher (2006), стр. 76.
«…во мраке сознания гоминидов»: о рисунках Тассилин-Аджера в Сахаре, Маккенне и цитате см.: McKenna (1992), ch. 6; рассуждения о Маккенне и рисунках с Тассилин-Аджера см.: Metzner (2005), pp. 42–43; более критическое обсуждение см.: Letcher (2006), pp. 37–38.
в этом был истинным мастером: в статье, опубликованной в 2019 году, анализировались остатки вещества внутри мешочка из лисьей морды, обнаруженного среди предметов ритуального набора возрастом более тысячи лет, найденного во время раскопок в Боливии. В этих остатках ученые обнаружили следы многочисленных психоактивных соединений, включая кокаин (из листьев коки), ДМТ (диметилтриптамин), хармин и буфотенин. Анализ также показал предположительное присутствие псилоцина – психоактивного продукта распада псилоцибина, что позволило бы считать, подтвердись его наличие, что в этом ритуальном наборе были когда-то псилоцибиновые грибы (Miller et al. [2019]). Элевсинские мистерии – празднования, посвященные Деметре, богине зерна и урожая, и ее дочери Персефоне – были одной из важнейших религиозных традиций Древней Греции. Непременной частью торжеств было то, что посвященные выпивали чашу некой жидкости, известной как кикеон. Выпив кикеон, они начинали видеть призраков и впадали в состояние благоговейного трепета, экстаза и предсказывали будущее. Многие из них рассказывали о том, что эти ощущения их навсегда изменили (Wasson et al. [2009], ch. 3). Хотя рецептура и механизм кикеона хранились в строжайшей тайне, скорее всего это был воздействующий на сознание напиток – громкий скандал разразился, когда стало известно, что афинские аристократы пили кикеон дома с гостями во время званых обедов (Wasson et al. [1986], p. 155). Списков приглашенных на ритуалы Элевсина не существовало, поэтому есть некоторая неопределенность относительно тех, кто на них присутствовал. Однако большинство афинян были посвящены в эти таинства, и считается, что многие важные персоны на них бывали, включая Еврипида, Софокла, Пиндара и Эсхила. Платон довольно подробно описывал посвящение в таинства в своих произведениях «Пир» и «Федр», используя термины, ясно указывающие на ритуалы Элевсина (Burkett [1987], pp. 91–93). Аристотель, не ссылаясь непосредственно на мистерии Элевсина, открыто упоминает посвящение в таинства, что, вероятно, равносильно указанию на элевсинские мистерии с учетом превосходства элевсинских ритуалов к середине IV века до н. э. Хофман, наряду с Гордоном Уоссоном и Карлом Руком выдвигал гипотезу о том, что кикеон изготавливали из спорыньи, росшей на злаках, каким-то образом очистив его, чтобы избежать ужасных симптомов, связанных со случайным отравлением (Wasson et al. [2009]). Маккенна предполагал, что жрецы в Элевсине распространяли псилоцибиновые грибы (McKenna [1992], ch. 8). Другие считали, что существовал некий препарат из опиумных маков. Есть и другие примеры использования грибов в древних религиозных обрядах. В Средней Азии возник религиозный культ, связанный с влияющим на сознание препаратом под названием «сома» (soma). Сома вызывала состояние экстаза, и гимны, посвященные соме, записаны в Ригведе, древнем тексте, датируемом примерно 1500 годом до н. э. Как и в случае с кикеоном, природа и состав напитка остаются неизвестными, многие – и чаще всех Уоссон – утверждали, что его готовили из мухомора, гриба с красной шляпкой и белыми пятнами на ней (Amanita muscaria). Об этом см.: Letcher [2008], ch. 8). Маккенна – как и следовало ожидать – утверждал, что псилоцибиновые грибы были более вероятными кандидатами. Другие предполагали использование марихуаны и гашиша. Ни для одного из этих предположений нет неопровержимых доказательств.
умами и сознанием жертв: ссылки на придуманных монстров см.: Yong (2017). В 2018 году исследователи в японском Университете Рюкю обнаружили, что некоторые виды цикад «приручили» кордицепсы (Ophiocordyceps), живущие в их телах (Matsuura et al. [2018]). Как и многие другие насекомые, питающиеся в основном соком, цикады зависят в своем выживании от бактерий, находящихся с ними в симбиозе и вырабатывающих определенные необходимые для жизни витамины и питательные вещества. Но у ряда японских видов цикад этих бактерий заменили определенные виды гриба кордицепса. Это было самое невероятное из того, что могло произойти. Кордицепсы – жестокие и умелые убийцы, оттачивавшие свои способности десятками миллионов лет. И все же в течение их долгой совместной жизненной истории кордицепсы стали незаменимыми партнерами в жизни цикад. Более того, такое происходило по крайней мере трижды внутри трех родов цикад. Прирученные грибки кордицепсы служат напоминанием о том, что грань между «полезными» и «паразитирующими» микроорганизмами не всегда четкая.
секретное средство для сохранения вечной молодости: об иммуноподавляющих лекарственных препаратах читайте в State of the World’s Fungi (2018), “Useful Fungi”; о панацее для сохранения вечной молодости см.: Adachi & Chiba (2007).
своими жертвами-насекомыми: Coyle et al. (2018); об «убойном» открытии читайте на сайте twitter.com/mbeisen/status/1019655132940627969 [дата обращения 29 октября 2019].
центральная нервная система остается невредимой: описание поведения зараженных мух см.: Hughes et al. (2016) и Cooley et al. (2018); о «летающих солонках смерти» (“flying saltshakers of death”) см.: Yong (2018).
совершенно иной истории: об исследовании Кассона (Kasson) см.: Boyce et al. (2019), c дискуссией можно познакомиться в работе Yong (2018). Это не первое сообщение о том, что грибы – манипуляторы насекомыми могут использовать химические вещества, способные также менять человеческое сознание, для контролирования своих жертв; во время некоторых туземных церемоний в Мексике грибы, близкородственные кордицепсу, едят вместе с псилоцибиновыми грибами (Guzmán et al. [1998]).
Но как именно – неизвестно: катинон, в соответствии с научными изысканиями, увеличивает агрессию у муравьев и, возможно, является причиной гиперактивного поведения, наблюдаемого у инфицированных цикад (Boyce et al. [2019]).
когда охотятся на лосей: см.: Ovid (1958), p. 186; о шаманизме среди племен Амазонии см.: Viveiros de Castro (2004); о юкагирах см.: Willerslev (2007).
«гриб, переодетый муравьем»: см.: Hughes et al. (2016). Нейромикробиология – относительно новая область, и осознание влияния кишечных микроорганизмов на поведение, восприятие и психологические состояния животных все еще остается фрагментарным (Hooks et al. [2018]). Тем не менее определенные тенденции начинают уже проявляться. Мышам, например, в первую очередь необходима здоровая кишечная микрофлора для формирования функциональной нервной системы (Bruce-Keller et al. [2018]). Если вывести из строя микробиомы молодых мышей до того, как у них успела сложиться функциональная нервная система, у них разовьются когнитивные отклонения, такие как проблемы с памятью и сложности с узнаванием предметов (de la Fuente-Nunez et al. [2017]). Наиболее впечатляющие результаты были получены во время исследования, где между видами мышей проводился взаимный обмен микробиотой. Когда разновидности «робких» мышей вводят фекальные трансплантаты «нормальных» мышей, они теряют осторожность. Аналогичным образом, если «нормальным» разновидностям мышей ввести кишечные микроорганизмы «робких» мышей, они становятся «чрезмерно осторожными и нерешительными» (Bruce-Keller et al. [2018]). Различия в кишечной микробиоте у мышей влияют на их способность забывать испытанную боль (Pennisi [2019b] и Chu et al. [2019]). Многие кишечные микробы вырабатывают химические вещества, влияющие на работу центральной нервной системы, включая нейротрансмиттеры и короткоцепочечные жирные кислоты. Более 90 % серотонина – нейротрансмиттера, обилие которого вызывает чувство радости и счастья, а недостаток – чувство подавленности – производится в кишечнике, и кишечные микробы играют главную роль в регулировании его производства (Yano et al. 2015). В двух научно-исследовательских работах изучались результаты подсадки фекальной микробиоты страдающих депрессией пациентов здоровым мышам и крысам. У животных появились симптомы подавленности, включая и тревожность, и потерю интереса к приятным, доставляющим удовольствие занятиям. Эти работы позволяют предположить, что дисбаланс кишечной микробиоты (микрофлоры) не только может привести к депрессии, но и что один и тот же дисбаланс может служить причиной подавленного состояния как у человека, так и у мышей (Zheng et al. [2016] и Kelly et al. [2016]). Дальнейшие исследования, проводившиеся на людях, продемонстрировали, что лечение определенными пробиотиками может уменьшить симптомы депрессии, тревожность, и появление негативных мыслей (Mohajeri et al. [2018] и Valles-Colomer et al. [2019]). Тем не менее за развитием области нейромикробиологии внимательно наблюдает индустрия, вкладывающая миллиарды в производство пробиотиков, и ряд исследователей указывает на тенденцию сильного переоценивания значимости определенных научных результатов. Кишечные сообщества микроорганизмов очень сложны, и манипулировать ими – очень трудная задача. При таком количестве переменных только немногим ученым удалось выявить причинные связи между воздействием конкретных микробов и конкретным поведением (Hooks et al [2018]).
«…и рыбе в этом пруду, и…»: полное изложение понятия «расширенного фенотипа» см.: Dawkins (1982); о «строгих ограничительных требованиях» к идее расширенного фенотипа см.: Dawkins (2004); обсуждение грибной манипуляции поведением насекомых в рамках расширенного фенотипа см.: Andersen et al. (2009), Hughes (2013 и 2014) и у Cooley et al. (2018).
их просто догоняет: изложение истории «первой волны» изучения псилоцибина в 1950-х и 1960-х см.: Dyke (2008) и Pollan (2018), ch. 3.
истории современной медицины: об исследовании, проведенном в Университете Джона Хопкинса, см.: Griffiths et al. (2016); об исследовании, выполненном в Университете Нью-Йорка, см.: Ross et al. (2016); интервью с Рональдом Гриффитсом (Griffiths) можно найти в фильме Fantastic Fungi: The Magic Beneath Us, поставленном Louis Schwartzberg; общую информацию, включая и описание «терапевтического воздействия» рекордных пропорций, можно найти у Pollan (2018), ch. 1.
ясного восприятия себя: об изучении мистических ощущений, вызванных псилоцибином, см.: Griffiths et al. (2008); о роли благоговения в психотерапии с применением психоделиков см.: Hendricks (2018).
единения с природой: о роли псилоцибина в лечении табакозависимости см.: Johnson et al. (2014 и 2015); о чувстве «открытости» и удовлетворения жизнью см.: MacLean et al. (2011); общую информацию о роли психоделиков в лечении зависимости см.: Pollan (2018), ch. 6, pt 2; об ощущении единения с природой см.: Lyons and Carhart-Harris (2018) и Studerus et al. (2011). В сообществах коренных американцев (американских индейцев) существует давняя традиция использования психоделического кактуса пейотля для лечения от алкоголизма. В период с 1950-х по 1970-е годы в ряде исследований рассматривалась возможность использования псилоцибина и ЛСД для лечения от наркотической зависимости. В нескольких были получены положительные результаты. В 2012 году мета-анализ свел воедино данные самых строго контролируемых испытаний. Он показал, что лишь одна доза ЛСД оказывала благотворное действие при лечении алкоголизма, которое продолжалось до полугода (Krebs and Johansen [2012]). В интернет-опросе, созданном для изучения «естественной экологии» данного явления, Мэтью Джонсон (Matthew Johnson) и его коллеги проанализировали опросники более 300 человек, которые сообщали о сокращении тяги к курению или полном отказе от него после единичного приема псилоцибина или ЛСД (Johnson et al. [2017]).
религиозных верований – существует: о том, что многие «начинали завзятыми материалистами или атеистами», см.: Pollan (2018), ch. 4; о нематериальной реальности как основе религиозной веры см.: Pollan (2018), ch. 2. Даже наблюдатели, которые руководят проведением сессий и наблюдением за ними, в Университете Джонса Хопкинса сообщали о неожиданных изменениях в своем мироощущении: «Я начинал атеистом, не веря, но во время работы я начал каждый день замечать вещи, которые противоречили моему неверию. Мир мой становился все более таинственным по мере того, как продолжались сессии, на которых я присутствовал вместе с принимавшими псилоцибин» (Pollan [2018], ch. 1).
и структуру нейронов: о влиянии психоделиков на рост и архитектуру нейронов читайте работу Ly et al. (2018).
неконтролируемым потокам в мозге: о псилоцибине и сети пассивного режима работы мозга (СПРРМ) см.: Carhart-Harris et al. (2012) и Petri et al. (2012); о воздействии ЛСД на коннективность мозга см.: Carhart-Harris et al. (2016b).
изменение симптомов: высказывание Абрама Хоффера (Hoffer) можно найти у Pollan (2018), ch. 3.
Назад: Благодарности
Дальше: Библиография